1
|
Yang H, Wu K, Zhu J, Lin Y, Ma X, Cao Z, Ma W, Gong F, Liu C, Pan J. Highly efficient and selective removal of anionic dyes from aqueous solutions using polyacrylamide/peach gum polysaccharide/attapulgite composite hydrogels with positively charged hybrid network. Int J Biol Macromol 2024; 266:131213. [PMID: 38552690 DOI: 10.1016/j.ijbiomac.2024.131213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/08/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
To avoid the weakness (lower adsorption rate and selectivity) of peach gum polysaccharide (PGP) and improve the adsorption performance of polyacrylamide (PAAm) hydrogel (lower adsorption capacity), in the present work, the PGP was chemically tailored to afford ammoniated PGP (APGP) and quaternized PGP (QPGP), and attapulgite (ATP) was bi-functionalized with cation groups and carbon‑carbon double bond. Then, PAAm/APGP and PAAm/QPGP/ATP hydrogels were synthesized via redox polymerization. The synthesis procedure and properties of hydrogels were traced by FTIR, SEM, XPS, TGA, TEM, and BET methods, and the dye adsorption performance of the hydrogels was evaluated using the new coccine (NC) and tartrazine (TTZ) aqueous solutions as the model anionic dyes. Effects of initial dye concentration, pH, and ionic strength on the adsorption were investigated. Compared with PAAm/APGP hydrogel, PAAm/APGP/ATP hydrogel exhibits higher adsorption rate, superior adsorption capacity, stability, and selectivity towards anionic dye. The adsorption process of PAAm/QPGP/ATP hydrogel reached equilibrium in about 20 min and followed the pseudo-second-order kinetic model and Langmuir isotherm. The adsorption capacities towards NC and TTZ of PAAm/QPGP/ATP hydrogel were calculated as 873.235 and 731.432 mg/g. This hydrogel adsorbent originating from PAAm, PGP, and ATP shows great promise for application in practical water treatment.
Collapse
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China
| | - Kaide Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianbo Zhu
- Shandong Jianbang New Material Co., Ltd, Jining, Shandong 370800, People's Republic of China
| | - Yongxiang Lin
- Shandong Jianbang New Material Co., Ltd, Jining, Shandong 370800, People's Republic of China
| | - Xudong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China.
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China.
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; School of Mechanical Technology, Wuxi Institute of Technology, Wuxi, Jiangsu 214121, People's Republic of China.
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, Jiangsu 213164, People's Republic of China
| | - Ji Pan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China; School of Rail Transportation, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China.
| |
Collapse
|
2
|
Weian W, Yunxin Y, Ziyan W, Qianzhou J, Lvhua G. Gallic acid: design of a pyrogallol-containing hydrogel and its biomedical applications. Biomater Sci 2024; 12:1405-1424. [PMID: 38372381 DOI: 10.1039/d3bm01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Polyphenol hydrogels have garnered widespread attention due to their excellent adhesion, antioxidant, and antibacterial properties. Gallic acid (GA) is a typical derivative of pyrogallol that is used as a hydrogel crosslinker or bioactive additive and can be used to make multifunctional hydrogels with properties superior to those of widely studied catechol hydrogels. Furthermore, compared to polymeric tannic acid, gallic acid is more suitable for chemical modification, thus broadening its range of applications. This review focuses on multifunctional hydrogels containing GA, aiming to inspire researchers in future biomaterial design. We first revealed the interaction mechanisms between GA molecules and between GA and polymers, analyzed the characteristics GA imparts to hydrogels and compared GA hydrogels with hydrogels containing catechol. Subsequently, in this paper, various methods of integrating GA into hydrogels and the applications of GA in biomedicine are discussed, finally assessing the current limitations and future development potential of GA. In summary, GA, a natural small molecule polyphenol with excellent functionality and diverse interaction modes, has great potential in the field of biomedical hydrogels.
Collapse
Affiliation(s)
- Wu Weian
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Ye Yunxin
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Wang Ziyan
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Jiang Qianzhou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| | - Guo Lvhua
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, China.
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, China
| |
Collapse
|
3
|
Acuña-Nicolás J, Montesinos-Vázquez T, Pérez-Silva I, Galán-Vidal CA, Ibarra IS, Páez-Hernández ME. Modified Polysulfone Nanofibers for the Extraction and Preconcentration of Lead from Aqueous Solutions. Polymers (Basel) 2023; 15:3086. [PMID: 37514475 PMCID: PMC10384298 DOI: 10.3390/polym15143086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Since lead is a highly toxic metal, it is necessary to detect its presence in different samples; unfortunately, analysis can be complicated if the samples contain concentrations below the detection limit of conventional analytical techniques. Solid phase extraction is a technique that allows the carrying out of a pre-concentration process and thus makes it easy to quantify analytes. This work studied the efficiency of sorption and preconcentration of lead utilizing polysulfone (PSf) fibers grafted with acrylic acid (AA). The best conditions for Pb(II) extraction were: pH 5, 0.1 mol L-1 of ionic strength, and 40 mg of sorbent (70% of removal). The sorbed Pb(II) was pre-concentrated by using an HNO3 solution and quantified using flame atomic absorption spectrometry. The described procedure was used to obtain a correlation curve between initial concentrations and those obtained after the preconcentration process. This curve and the developed methodology were applied to the determination of Pb(II) concentration in a water sample contained in a handmade glazed clay vessel. With the implementation of the developed method, it was possible to pre-concentrate and determine a leached Pb(II) concentration of 258 µg L-1.
Collapse
Affiliation(s)
- Jessica Acuña-Nicolás
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Tanese Montesinos-Vázquez
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Irma Pérez-Silva
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Carlos A Galán-Vidal
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - Israel S Ibarra
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| | - M Elena Páez-Hernández
- Laboratorio 2, Área Académica de Química, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma 42184, Mexico
| |
Collapse
|
4
|
Zhao C, Liu G, Tan Q, Gao M, Chen G, Huang X, Xu X, Li L, Wang J, Zhang Y, Xu D. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J Adv Res 2023; 44:53-70. [PMID: 36725194 PMCID: PMC9936414 DOI: 10.1016/j.jare.2022.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND With rapid development in agriculture and industry, water polluted with heavy metallic ions has come to be a serious problem. Adsorption-based methods are simple, efficient, and broadly used to eliminate heavy metals. Conventional adsorption materials have the problems of secondary environmental contamination. Hydrogels are considered effective adsorbents, and those prepared from biopolymers are biocompatible, biodegradable, non-toxic, safe to handle, and increasingly used to adsorb heavy metal ions. AIM OF REVIEW The natural origin and easy degradability of biopolymer hydrogels make them potential for development in environmental remediation. Its water absorption capacity enables it to efficiently adsorb various pollutants in the aqueous environment, and its internal pore channels increase the specific surface area for adsorption, which can provide abundant active binding sites for heavy metal ions through chemical modification. KEY SCIENTIFIC CONCEPT OF REVIEW As the most representative of biopolymer hydrogels, polysaccharide-based hydrogels are diverse, physically and chemically stable, and can undergo complex chemical modifications to enhance their performance, thus exhibiting superior ability to remove contaminants. This review summarizes the preparation methods of hydrogels, followed by a discussion of the main categories and applications of polysaccharide-based biopolymer hydrogels.
Collapse
Affiliation(s)
- Chenxi Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| | - Qiyue Tan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| |
Collapse
|
5
|
Wang Q, Zhu S, Xi C, Shen Y, Xiang Y, Zhang F. The cross‐linked hyperbranched polyamide‐amines: The preparation and its adsorption for Pb(
II
). J Appl Polym Sci 2022. [DOI: 10.1002/app.51866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qian Wang
- College of chemistry and chemical engineering, Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province Jishou University Jishou China
| | - Sining Zhu
- College of chemistry and chemical engineering, Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province Jishou University Jishou China
| | - Chen Xi
- College of chemistry and chemical engineering, Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province Jishou University Jishou China
| | - Yongqiang Shen
- College of chemistry and chemical engineering, Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province Jishou University Jishou China
| | - Yanhong Xiang
- College of Physics and Electrical Engineering Jishou University Jishou China
| | - Fan Zhang
- College of chemistry and chemical engineering, Key Laboratory of Mineral Cleaner Production and Exploit of Green Functional Materials in Hunan Province Jishou University Jishou China
| |
Collapse
|
6
|
Plasma-enhanced modification of polysaccharides for wastewater treatment: A review. Carbohydr Polym 2021; 252:117195. [PMID: 33183635 DOI: 10.1016/j.carbpol.2020.117195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/23/2023]
Abstract
In this work, novel polysaccharide-based sorbents modified with plasma technologies are discussed. Plasma selectively modifies the surface properties by generating specific moieties, enhancing adsorption performance, and the physical-chemical properties of the material without modifying its bulk properties. Among plasma technologies, cold plasma is more suitable and energy-efficient, since thermal-sensitive materials could be modified using this technology. Besides, atmospheric-pressure plasma systems possess the required features to scale-up plasma technologies for surface modification of sorbents. Moreover, a big challenge is the semi-continuous operation to modify sorbents as it would decrease overall process costs. Due to its low-cost and extensive availability, polysaccharide-based sorbents are promising substrates for plasma-enhanced modification to develop highly efficient adsorbents. The development of polysaccharide-based materials includes modified cellulose, chitosan, or lignocellulosic materials with functionalities that increase adsorption capacity and selectivity towards a specific organic or inorganic pollutant.
Collapse
|
7
|
Upadhyay U, Sreedhar I, Singh SA, Patel CM, Anitha K. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym 2021; 251:117000. [DOI: 10.1016/j.carbpol.2020.117000] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/15/2020] [Accepted: 08/23/2020] [Indexed: 12/11/2022]
|
8
|
Biswal A, Sethy PK, Swain SK. Change in Orientation of Polyacrylic Acid and Chitosan Networks by Imprintment of Gold Nanoparticles. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1793196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anuradha Biswal
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| | - Pramod K. Sethy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, India
| |
Collapse
|
9
|
Liu H, Wang Q, Zhang F. Preparation of Fe 3O 4@SiO 2@ P(AANa- co-AM) Composites and Their Adsorption for Pb(II). ACS OMEGA 2020; 5:8816-8824. [PMID: 32337443 PMCID: PMC7178785 DOI: 10.1021/acsomega.0c00403] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 05/23/2023]
Abstract
A series of magnetic composites of sodium polyacrylate and polyacrylamide copolymer [Fe3O4@SiO2@P(AANa-co-AM)] were prepared. The investigation showed that the adsorption efficiency of Pb(II) was the best when the acrylamide/acrylic acid (AM/AA) mass ratio of composites was 5:5. Therefore, the composite of this ratio was selected as the adsorbent to systematically adsorb Pb(II) in aqueous solution. Static adsorption of Pb(II) to the magnetic composites in aqueous solutions was investigated by varying the solution pH and the concentration of Pb(II). The adsorption kinetics and isotherms model of Pb(II) on the Fe3O4@SiO2@P(AANa-co-AM) composites followed a pseudo-second-order model and the Langmuir isotherm model, respectively. When the temperatures were 298.15, 308.15, and 318.15 K, the maximum adsorption capacities of Fe3O4@SiO2@P(AANa-co-AM) composites were 237.53, 248.14, and 255.10 mg/g, respectively. The thermodynamic study of adsorption showed that the adsorption of Pb(II) on Fe3O4@SiO2@P(AANa-co-AM) composites was a spontaneous endothermic process. The X-ray photoelectron spectroscopy (XPS) analysis showed that the adsorption of Pb(II) was due to the chelation between -COO- and Pb(II). After four adsorption-desorption cycles, the adsorbent can still maintain a high adsorption capacity.
Collapse
|
10
|
Gao D, Wei X, Zhang Y, Ma Y, Wang G, Zhao X, Liu K, Huo Y, Wang H, Wang B. Preparation of TiO2-P(AM-AA) organic-inorganic composite water-retaining agent based on photocatalytic surface-initiated polymerization. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1702555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Dekuan Gao
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Xinfang Wei
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
- School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, P. R. China
| | - Yukai Zhang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Yuan Ma
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Guanqi Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Xin Zhao
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Kefan Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Yuanfei Huo
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| | - Haiwang Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
- School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning, P. R. China
| | - Bingzhu Wang
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, Hebei, P. R. China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao, Hebei, P. R. China
| |
Collapse
|