1
|
Seoane-Rivero R, Ares-Elejoste P, Gondra K, Amini S, de Hoyos PL, Gonzalez-Alriols M. Sustainable Epoxy Composites with UV Resistance Based on New Kraft Lignin Coatings. Molecules 2024; 29:3697. [PMID: 39125101 PMCID: PMC11313785 DOI: 10.3390/molecules29153697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Currently, the composite industry is focusing on more environmentally friendly resources in order to generate a new range of biobased materials. In this manuscript, we present a new work using lignocellulosic wastes from the paper industry to incorporate into biobased epoxy systems. The manufactured materials were composed of kraft lignin, glass fiber, and a sustainable epoxy system, obtaining a 40% biobased content. Using a vacuum infusion process, we fabricated the composites and analyzed their mechanical and UV resistance properties. The findings reveal a significant correlation between the lignin content and flexural modulus and strength, showing an increase of 69% in the flexural modulus and 134% in the flexural strength with the presence of 5% of lignin content. Moreover, it is necessary to highlight that the presence of synthesized lignin inhibits the UV degradation of the biobased epoxy coating. We propose that the use of lignocellulosic-based wastes could improve the mechanical properties and generate UV resistance in the composite materials.
Collapse
Affiliation(s)
- Rubén Seoane-Rivero
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Edificio 202, 48170 Zamudio, Spain
| | - Patricia Ares-Elejoste
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Edificio 202, 48170 Zamudio, Spain
| | - Koldo Gondra
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Edificio 202, 48170 Zamudio, Spain
| | - Sara Amini
- Biorefinery Processes Research Group, Chemical & Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Pedro-Luis de Hoyos
- Biorefinery Processes Research Group, Chemical & Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Maria Gonzalez-Alriols
- Biorefinery Processes Research Group, Chemical & Environmental Engineering Department, Faculty of Engineering, Gipuzkoa, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
2
|
Wei A, Wang S, Zou Y, Xiang C, Xu F, Sun L. Preparation of a Flame-Retardant Curing Agent Based on Phytic Acid-Melamine Ion Crosslinking and Its Application in Wood Coatings. Polymers (Basel) 2024; 16:1557. [PMID: 38891502 PMCID: PMC11174712 DOI: 10.3390/polym16111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
To broaden the applications of wood, it is necessary to prepare flame-retardant coatings that can protect wood substrates during combustion. In this study, a bio-based, intumescent, flame-retardant phytic acid-melamine polyelectrolyte (PM) was prepared using phosphorus-rich biomass phytic acid and nitrogen-rich melamine as raw materials through an ion crosslinking reaction. Subsequently, a series of bio-based, flame-retardant wood coatings were prepared by optimizing the structure of urea-formaldehyde resin with the addition of melamine, sodium lignosulfonate, and PM as a flame-retardant curing agent. Woods coated with PM-containing coatings displayed significantly improved flame-retardant performances in comparison to uncoated woods. For PM-cured woods, the measured values of total heat release and total smoke production were 91.51% and 57.80% lower, respectively, compared with those of uncoated wood. Furthermore, the fire growth index decreased by 97.32%, indicating a lower fire hazard. This increase in flame retardancy and smoke suppression performance is due to the dense expanded carbon layer formed during the combustion of the coating, which isolates oxygen and heat. In addition, the mechanical properties of the flame-retardant coatings cured with PM are similar to those cured with a commercial curing agent, NH4Cl. In addition, the prepared flame-retardant coating can also stain the wood. This study proves the excellent flame-retarding and curing effect of ammonium phytate in urea-formaldehyde resin coatings and provides a new approach for the application of bio-based flame retardants in wood coatings.
Collapse
Affiliation(s)
- An Wei
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Shunxiang Wang
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Yongjin Zou
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
- Nanning Guidian Electronic Technology Research Institute Co., Ltd., Nanning 530000, China
| | - Cuili Xiang
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Fen Xu
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Lixian Sun
- College of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| |
Collapse
|
3
|
Dong S, Wang Y, Lan T, Wang J, Zu L, Xiao T, Yang Y, Wang J. Synthesis of High-Molecular-Weight Bifunctional Additives with both Flame Retardant Properties and Antistatic Properties via ATRP. ACS OMEGA 2022; 7:44287-44297. [PMID: 36506206 PMCID: PMC9730767 DOI: 10.1021/acsomega.2c05809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Polystyrene (PS) is widely used in our daily life, but it is flammable and produces a large number of toxic gases and high-temperature flue gases in the combustion process, which limit its application. Improving the flame retardancy of PS has become an urgent problem to be solved. In addition, in view of the disadvantage that small-molecule flame retardants can easily migrate from polymers during use, which leads to the gradual reduction of the flame retardant effect or even loss of flame retardant performance, and the outstanding advantages of ATRP technology in polymer structure design and function customization, we used ATRP technology to synthesize the high-molecular-weight bifunctional additive PFAA-DOPO-b-PDEAEMA, which has flame retardant properties and antistatic properties. The chemical structure and molecular weight of PFAA-DOPO-b-PDEAEMA were characterized by FTIR, 1H NMR, GPC, and XPS. When the addition of PFAA-DOPO-b-PDEAEMA was 15 wt %, the limiting oxygen index (LOI) of polystyrene composites was 28.4%, which was 53.51% higher than that of pure polystyrene, the peak of the heat release rate (pHRR) was 37.61% lower than that of pure polystyrene, UL-94 reached V-0 grade, and the flame retardant index (FRI) was 2.98. In addition, when the PFAA-DOPO-b-PDEEMA content is 15 wt %, the surface resistivity and volume resistivity of polystyrene composites are 2 orders of magnitude lower than those of polystyrene. This research work provides a reference for the design of bifunctional and even multifunctional polymers.
Collapse
Affiliation(s)
- Shaobo Dong
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing163318, People’s Republic
of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar161006, People’s Republic
of China
| | - Yazhen Wang
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing163318, People’s Republic
of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar161006, People’s Republic
of China
- College
of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin150040, People’s Republic of China
| | - Tianyu Lan
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing163318, People’s Republic
of China
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar161006, People’s Republic
of China
| | - Jianxin Wang
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar161006, People’s Republic
of China
| | - Liwu Zu
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar161006, People’s Republic
of China
| | - Tianyuan Xiao
- College
of Light Industry and Textile, Qiqihar University, Qiqihar161006, People’s Republic of China
| | - Yonghui Yang
- Heilongjiang
Province Key Laboratory of Polymeric Composition Material, College
of Materials Science and Engineering, Qiqihar
University, Qiqihar161006, People’s Republic
of China
| | - Jun Wang
- College
of Chemistry and Chemical Engineering, Northeast
Petroleum University, Daqing163318, People’s Republic
of China
| |
Collapse
|