1
|
Davarnejad R, Sarvmeili K, Safari Z, Kennedy JF. Estrogen adsorption from an aqueous solution on the chitosan nanoparticles. Int J Biol Macromol 2023; 237:124224. [PMID: 36990402 DOI: 10.1016/j.ijbiomac.2023.124224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
In this research, chitosan nanoparticles as an efficient and reusable adsorbent with adsorption capacity of 5.79 mg/g, surface area of 62 m2/g and pHpzc of 8.07 were applied to remove the ethinylestradiol (as a sample of estrogen) from an aqueous wastewater. The chitosan nanoparticles were characterized by SEM, XRD and FT-IR analyses. Four independent variables involving contact time, adsorbent dosage, pH, and initial concentration of estrogen were applied to design the experiments by Design Expert software (CCD under RSM). In fact, number of experiments was minimized and the operating conditions were optimized for the maximum estrogen removal. The results indicated that three independent variables (contact time, adsorbent dosage, and pH) increment increased the estrogen removal while the estrogen initial concentration enhancement decreased the removal due to the concentration polarization phenomenon. The optimum conditions for the estrogen removal (92.50 %) on the chitosan nanoparticles were found at contact time of 220 min, adsorbent dosage of 1.45 g/l, pH of 7.3 and estrogen initial concentration of 5.7 mg/l. Moreover, the Langmuir isotherm and pseudo-second order models could properly legitimize estrogen adsorption process on the chitosan nanoparticles.
Collapse
|
2
|
Ranjbari S, Ayati A, Niknam Shahrak M, Tanhaei B, Hamidi Tabrizi S. Design of [BmIm] 3PW 12O 40 Ionic Liquid Encapsulated-ZIF-8 Nanocomposite for Cationic Dye Adsorptive Removal: Modeling by Response Surface Methodology. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| | - Ali Ayati
- ChemBio Cluster, ITMO University, 9 Lomonosova Street, Saint Petersburg191002, Russia
| | - Mahdi Niknam Shahrak
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| | - Soheil Hamidi Tabrizi
- Department of Chemical Engineering, Quchan University of Technology, Quchan94771-67335, Iran
| |
Collapse
|
3
|
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Afshari M, Varma RS, Saghanezhad SJ. Catalytic Applications of Heteropoly acid-Supported Nanomaterials in Synthetic Transformations and Environmental Remediation. COMMENT INORG CHEM 2022. [DOI: 10.1080/02603594.2022.2109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mozhgan Afshari
- Department of Chemistry, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | | |
Collapse
|
5
|
Afshar EA, Taher MA. New fabrication of CuFe2O4/PAMAM nanocomposites by an efficient removal performance for organic dyes: Kinetic study. ENVIRONMENTAL RESEARCH 2022; 204:112048. [PMID: 34536375 DOI: 10.1016/j.envres.2021.112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Today, removing pollutants from water sources is essential because of the population increase and the growing need for safe drinking water. Dyes are one of the most critical pollutants from industrial effluents such as paper and textile industries that profoundly affect the environment. There are several ways to remove environmental contaminants. Magnetic nanoparticles have a high ability to adsorb dyes. Of course, increasing the interaction between magnetic nanomaterials and pollutants is also essential, which can be done using porous materials such as dendrimers. In this work, the synthesis of CuFe2O4 magnetite nanoparticles within the polyamidoamine dendrimers structure was used as an efficient sorbent to remove both alizarin reds (ARS) and brilliant green (BG) dyes. Moreover, various parameters for dyes removal were studied. The optimum removal conditions were obtained for ARS within 30 min at a sorbent dose of 2 mg per 5 mL for the initial dye concentration of 7.0 ppm in pH 6 at 25 °C, and for BG within 45 min at a sorbent dose of 5 mg per 5 mL for the initial dye concentration of 17.0 ppm in pH 8 at 25 °C. At the optimum values of the above parameters, both dyes' removal efficiency was more than 97%. Also, the obtained results showed that the adsorption isotherm follows the Langmuir model and Temkin model for ARS and BG, respectively. This method was successfully used for the removal of both dyes in water samples.
Collapse
Affiliation(s)
- Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Research Societies, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
6
|
Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. ENVIRONMENTAL RESEARCH 2022; 204:111961. [PMID: 34492277 DOI: 10.1016/j.envres.2021.111961] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.
Collapse
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
7
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
8
|
Nageswar YVD, Domingues NL, Katla R, Katla R. Application of Chitosan‐Based Catalysts for Heterocycles Synthesis and Other Reactions. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
9
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Recent Applications of Heteropolyacids and Related Compounds in Heterocycle Synthesis. Contributions between 2010 and 2020. Catalysts 2021. [DOI: 10.3390/catal11020291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Over the past two decades, polyoxometalates (POM) have received considerable attention as solid catalysts, due to their unique physicochemical characteristics, since, first, they have very strong Bronsted acidity, approaching the region of a superacid, and second, they are efficient oxidizers that exhibit rapid redox transformations under fairly mild conditions. Their structural mobility is also highlighted, since they are complex molecules that can be modified by changing their structure or the elements that compose them to model their size, charge density, redox potentials, acidity, and solubility. Finally, they can be used in substoichiometric amounts and reused without an appreciable loss of catalytic activity, all of which postulate them as versatile, economic and ecological catalysts. Therefore, in 2009, we wrote a review article highlighting the great variety of organic reactions, mainly in the area of the synthesis of bioactive heterocycles in which they can be used, and this new review completes that article with the contributions made in the same area for the period 2010 to 2020. The synthesized heterocycles to be covered include pyrimidines, pyridines, pyrroles, indoles, chromenes, xanthenes, pyrans, azlactones, azoles, diazines, azepines, flavones, and formylchromones, among others.
Collapse
|
11
|
Affiliation(s)
- Sana Sikandar
- Department of Chemistry Government College University Faisalabad Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry Government College University Faisalabad Faisalabad Pakistan
| |
Collapse
|
12
|
Moghadam H, Sobhani S, Sansano JM. New Nanomagnetic Heterogeneous Cobalt Catalyst for the Synthesis of Aryl Nitriles and Biaryls. ACS OMEGA 2020; 5:18619-18627. [PMID: 32775864 PMCID: PMC7407554 DOI: 10.1021/acsomega.0c01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
Cobalt nanoparticles immobilized on magnetic chitosan (Fe3O4@CS-Co) have been prepared. They were identified using various techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, thermogravimetric analysis, vibrating sample magnetometry, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy analysis and applied efficiently as a cobalt catalyst in the cyanation and fluoride-/palladium-free Hiyama reactions of different types of aryl halides employing K4[Fe(CN)6]·3H2O and triethoxyphenylsilane, respectively. After each reaction, the catalyst was isolated and reused for the second run. The catalytic activity of the catalyst was not lost apparently even after five runs. No considerable changes in its chemical structure and morphology were observed. It is worth to note that in this paper, the cobalt catalyst has been used for the first time for the cyanation of aryl halides.
Collapse
Affiliation(s)
- Hadis
Hosseini Moghadam
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 9717434765, Iran
| | - Sara Sobhani
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 9717434765, Iran
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Centro de
Innovación en Química Avanzada (ORFEO-CINQA) and Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| |
Collapse
|
13
|
Hosseini Mohtasham N, Gholizadeh M. Nano silica extracted from horsetail plant as a natural silica support for the synthesis of H3PW12O40 immobilized on aminated magnetic nanoparticles (Fe3O4@SiO2-EP-NH-HPA): a novel and efficient heterogeneous nanocatalyst for the green one-pot synthesis of pyrano[2,3-c]pyrazole derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04133-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
14
|
Saneinezhad S, Bamoharram FF, Mozhdehi AM, Sharifi AH, Ayati A, Pordel M, Baharara J, Sillanpää M. Functionalized cellulose-preyssler heteropolyacid bio-composite: An engineered and green matrix for selective, fast and in–situ preparation of Pd nanostructures: synthesis, characterization and application. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
15
|
Daraie M, Heravi MM. A biocompatible chitosan-ionic liquid hybrid catalyst for regioselective synthesis of 1,2,3-triazols. Int J Biol Macromol 2019; 140:939-948. [DOI: 10.1016/j.ijbiomac.2019.08.162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/15/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022]
|
16
|
Taghavi M, Ghaneian MT, Ehrampoush MH, Tabatabaee M, Afsharnia M, Alami A, Mardaneh J. Feasibility of applying the LED-UV-induced TiO 2/ZnO-supported H 3PMo 12O 40 nanoparticles in photocatalytic degradation of aniline. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:188. [PMID: 29502239 DOI: 10.1007/s10661-018-6565-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/19/2018] [Indexed: 05/08/2023]
Abstract
In the present study, TiO2/ZnO-supported phosphomolybdic acid nanoparticles are investigated by the impregnation method, followed by analyzing their photocatalytic activity under UV-LED light and degradation kinetics degrading aniline as an organic pollutant model. Nanoparticle characteristics and the remaining Keggin structure in the nanocomposites were confirmed by means of FESEM, FTIR, and XRD analyses. Heterogenization of phosphomolybdic acid on TiO2 and ZnO nanoparticles resulted in the improved light absorption intensity and decreased band gap of nanocomposites. Photocatalytic degradation of aniline was also improved for composite nanoparticles and reached to 25.62, 43.48, and 38.25% for TiO2/HPMo, ZnO/HPMo, and TiO2/ZnO/HPMo, respectively. Overall, the results showed a good fit to the Langmuir-Hinshelwood kinetic model.
Collapse
Affiliation(s)
- Mahmoud Taghavi
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Environmental Health Engineering, School of Public Health, Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Mohammad Taghi Ghaneian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Ehrampoush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Mojtaba Afsharnia
- Department of Environmental Health Engineering, School of Public Health, Social Development & Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Alami
- Social Determinants of Health Research Center; Department of Social Medicine, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Jalal Mardaneh
- Department of Microbiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
17
|
A novel inorganic–organic nanohybrid material SBA-15@triazine/H5PW10V2O40 as efficient catalyst for the one-pot multicomponent synthesis of multisubstituted pyridines. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1309-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Naeimi H, Lahouti S. Magnetic nanoparticles coated with a chitosan anchored Schiff base complex of nickel(II) as an effective, reusable catalyst for one-pot synthesis of spirolactones. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0208-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
19
|
Synthesis, characterization and photocatalytic activity of TiO 2 /ZnO-supported phosphomolybdic acid nanocomposites. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Asadi S, Sedghi R, Heravi MM. Pd Nanoparticles Immobilized on Supported Magnetic GO@PAMPS as an Auspicious Catalyst for Suzuki–Miyaura Coupling Reaction. Catal Letters 2017. [DOI: 10.1007/s10562-017-2089-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|