1
|
Liu R, Gu B, Chen M, Ye J, Chu Q. Deep eutectic solvents combined with beta-cyclodextrin derivatives for chiral separation of typical adrenergic receptor agonists by capillary electrophoresis with amperometric detection. J Pharm Biomed Anal 2023; 236:115748. [PMID: 37757546 DOI: 10.1016/j.jpba.2023.115748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Enantioseparation has always been one of the research hotspots and difficulties in the field of modern separation science. In this work, a binary chiral electrophoretic separation system was constructed using deep eutectic solvents (DESs) coupled with beta-cyclodextrin derivatives based on capillary electrophoresis with amperometric detection system, and five groups of typical adrenergic receptor agonists (adrenaline, salbutamol, isoproterenol, norepinephrine and terbutaline) were selected as the model enantiomers. The effects of additive types and contents of DESs and cyclodextrins, and the pH value and concentration of the running buffer on the resolution of the selected chiral compounds were investigated in detail. The mechanism of DESs improving separation was explored preliminarily by means of UV spectrophotometry, which was further verified based on the comparison of single and mixed components of choline chlorine-urea DES. Under the optimum conditions, the relative standard deviations for inter-day and intra-day repeatability of the migration time, peak area and resolution for adrenaline and salbutamol were within 8.7%, and the limits of detection reached 0.030 μg mL-1 (S/N = 3). The recovery data were in the range of 96.3-118.7%. The developed methods have been applied for the analyses of (+)-adrenaline hydrochloride injection and (±)-salbutamol aerosol. This binary chiral electrophoretic separation system by CE-AD has high detection sensitivity and low analytical cost, providing an alternative for the separation and analysis of chiral drugs.
Collapse
Affiliation(s)
- Ru Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Boning Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Meijun Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
2
|
Liu Q, Li Y, Liu R, Chen Q, Chu Q. Hierarchical porous zeolitic imidazolate framework‑8 supported hollow-fiber liquid-phase microextraction of nine typical phenolic pollutants in water samples followed by electrophoretic analysis. J Chromatogr A 2023; 1706:464264. [PMID: 37562106 DOI: 10.1016/j.chroma.2023.464264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Hierarchical porous zeolitic imidazolate framework‑8 (HpZIF-8) have not only good chemical and thermal stability, but also pore structures of different sizes. In this work, HpZIF-8 supported hollow-fiber liquid-phase microextraction (HpZIF-8@HF-LPME) co-modified with tributyl phosphate and 2-nitroethyl benzene was firstly developed for purification and enrichment of nine typical phenolic pollutants followed by electrophoretic separation and amperometric detection (CE-AD). The key enrichment parameters were optimized by full factorial experimental and central composite designs. Under the optimum conditions, the maximum enrichment factors for the nine analytes were 479 (phenol), 249 (2-chlorophenol), 821 (4-chlorophenol), 1253 (3-methylphenol), 1376 (2,4-dichlorophenol), 1078 (2,4,6-trichlorophenol), 200 (pentachlorophenol), 614 (4-nitrophenol) and1827 times (bisphenol A), respectively. The limits of detection were 0.060-1.5 µg L-1 (S/N = 3) in real sample matrixes. This proposed method has been successfully applied to water samples with high ionic strength, and the average recoveries were in the range of 80.2-118.0%. This developed method of HpZIF-8@HF-LPME/CE-AD needs no desorption and derivatization, providing an alternative for monitoring typical phenolic pollutants in water samples.
Collapse
Affiliation(s)
- Qianqian Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yuke Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ru Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qi Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Zhang S, Ning J, Wang Q, Wang W. Fluorescence enhancement of flavonoids and its application in ingredient determination for some traditional Chinese medicines by CE-LIF. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37309583 DOI: 10.1039/d3ay00486d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Flavonoids are widely used in the treatment of various diseases due to their antioxidant, anti-inflammatory, anticancer and antiviral properties. Fluorescence detection is rarely applied for the determination of flavonoids because of their weak fluorescence. In this work, a method of fluorescence enhancement of flavonoids was firstly introduced by using sodium acetate for flavonoid derivatization. The study discovered that flavonoids, with a hydroxyl at the C3 position, had the ability to emit strong fluorescence after derivatization. Five flavonoids, kaempferide, galangin, isorhamnetin, kaempferol and quercetin, having a special structure, were selected, derivatized and analyzed by capillary electrophoresis with laser-induced fluorescence detection. Under the optimal conditions, the five flavonoids could be completely separated within 3 minutes. Good linear relationships were obtained for all analytes and the limits of detection for the five flavonoids were in the range of 1.18-4.67 × 10-7 mol L-1. Finally, the method was applied to the determination of flavonoids in five traditional Chinese medicines: aster, chamomile, galangal, tangerine peel and cacumen biotae. Flavonoids were successfully found in all these medicines by the developed method. The recoveries were in the range of 84.2-111%. The method developed in this study was fast, sensitive and reliable for the determination of flavonoids.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Jinfeng Ning
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Qingqing Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Wei Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, School of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China.
| |
Collapse
|
4
|
A Novel Planar Grounded Capacitively Coupled Contactless Conductivity Detector for Microchip Electrophoresis. MICROMACHINES 2022; 13:mi13030394. [PMID: 35334684 PMCID: PMC8953769 DOI: 10.3390/mi13030394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
In the microchip electrophoresis with capacitively coupled contactless conductivity detection, the stray capacitance of the detector causes high background noise, which seriously affects the sensitivity and stability of the detection system. To reduce the effect, a novel design of planar grounded capacitively coupled contactless conductivity detector (PG-C4D) based on printed circuit board (PCB) is proposed. The entire circuit plane except the sensing electrodes is covered by the ground electrode, greatly reducing the stray capacitance. The efficacy of the design has been verified by the electrical field simulation and the electrophoresis detection experiments of inorganic ions. The baseline intensity of the PG-C4D was less than 1/6 of that of the traditional C4D. The PG-C4D with the new design also demonstrated a good repeatability of migration time, peak area, and peak height (n = 5, relative standard deviation, RSD ≤ 0.3%, 3%, and 4%, respectively), and good linear coefficients within the range of 0.05–0.75 mM (R2 ≥ 0.986). The detection sensitivity of K+, Na+, and Li+ reached 0.05, 0.1, and 0.1 mM respectively. Those results prove that the new design is an effective and economical approach which can improve sensitivity and repeatability of a PCB based PG-C4D, which indicate a great application potential in agricultural and environmental monitoring.
Collapse
|
5
|
|
6
|
Fang Z, Gong J, Jing X, Wang T, Ye J, Chu Q, Huang D. Zeolitic imidazolate framework-8 reinforced hollow-fiber liquid-phase microextraction of free urinary biomarkers of whole grain intake followed by CE analysis. J Sep Sci 2020; 43:2889-2896. [PMID: 32363807 DOI: 10.1002/jssc.202000120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/09/2020] [Accepted: 04/30/2020] [Indexed: 01/20/2023]
Abstract
The whole grain intake is closely associated with human health. In this work, three-phase dynamic hollow-fiber liquid-phase microextraction reinforced with 0.10 mg/mL 30 nm zeolitic imidazolate framework-8 nanoparticles was introduced for purification and enrichment of free urinary metabolite biomarkers of whole grain intake. Eight milliliters of HCl (pH 3.00) and 8 μL of 300 mM NaOH solutions were used as the donor and acceptor phases, respectively. The temperature and stirring rate were kept at 25℃ and 500 rpm, and the extraction time was 40 min. The extraction process required no further desorption, and the resultant extract was directly used for electrophoretic analysis without derivatization. Based on the synergistic effect of hollow-fiber liquid-phase microextraction and the electrophoretic stacking, the enrichment factors of 3,5-dihydroxybenzoic acid and 3-(3,5-dihydroxyphenyl)-1-propionic acid reached 1018-1034 times, and their limits of detection achieved 0.33-0.67 ng/mL (S/N = 3) in urine matrix. The developed method has been successfully used for urine analysis, and the sample recovery data were in the range of 97.0-103.5%. This developed method provided an attractive alternative for the determination of urinary metabolite biomarkers of whole grain intake due to its sensitive, fast, low-cost, and environmental-friendly features.
Collapse
Affiliation(s)
- Zhonghui Fang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiacheng Gong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Xiaofeng Jing
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Tingting Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Dongping Huang
- Shanghai Putuo District People's Hospital, Shanghai, P. R. China
| |
Collapse
|
7
|
Luo D, Fang Z, Zhao X, Ma Y, Ye J, Chu Q. Salt-effect enhanced hollow-fiber liquid-phase microextraction of glutathione in human saliva followed by miniaturized capillary electrophoresis with amperometric detection. Electrophoresis 2020; 41:328-334. [PMID: 31884689 DOI: 10.1002/elps.201900390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022]
Abstract
A hollow-fiber liquid-phase microextraction (HF-LPME) method was established for purification and enrichment of glutathione (GSH) in human saliva followed by a miniaturized capillary electrophoresis with amperometric detection system (mini-CE-AD). Based on regulating isoelectric point and increasing salt effect to modify donor phase, HF-LPME could provide high enrichment efficiency for GSH up to 471 times, and the extract was directly injected for mini-CE-AD analysis. The salt-effect enhanced HF-LPME/mini-CE-AD method has been successfully applied to saliva analysis, and acceptable LOD (0.46 ng/mL, S/N = 3) and recoveries (92.7-101.3%) could be obtained in saliva matrix. The sample pretreatment of this developed method was simple and required no derivatization, providing a potential alternative for non-invasive fluid analysis using portable instrument.
Collapse
Affiliation(s)
- Dan Luo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Zhonghui Fang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Xiaoshuang Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Yaolu Ma
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Jiannong Ye
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P. R. China
| |
Collapse
|
8
|
Fast Determination of Main Bioamines and Precursor Amino Acids in Beer by Miniaturized Electrophoresis Using Gold Nanoparticle Composite Electrode. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1395-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|