1
|
Musuvadhi Babulal S, Anupriya J, Chen SM. Self assembled three dimensional β-Cu 2V 2O 7 hierarchical flower decorated porous carbon: An efficient electrocatalyst for flutamide detection in biological and environmental samples. CHEMOSPHERE 2022; 303:135203. [PMID: 35667499 DOI: 10.1016/j.chemosphere.2022.135203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The serious situation mandates the use of anticancer drugs, which protect people all over the world from the growth of prostate cancer. In particular, excessive dosage and erroneous discharge of flutamide concentration cause make environmental pollution on the surface of the wastewater. In this study, the highly sensitive and selective electrochemical approach based on copper vanadium oxide decorated porous carbon (denoted as β-Cu2V2O7/PC) composite modified glassy carbon electrode (GCE) has been developed and it was applied for sensitive detection of anticancer drug flutamide (FTM). Moreover, using the co-precipitation method, the flower-like β-Cu2V2O7 hierarchical microstructure was synthesized, and through the wet chemical process, the β-Cu2V2O7/PC composite was obtained. The resultant product was characterized by XRD, FTIR, RAMAN, XPS and structural morphology established by FESEM analysis. Besides that, the electrochemical characterization and properties were analyzed by cyclic voltammetry (CV) and amperometric (i-t) techniques. The β-Cu2V2O7/PC/RDGCE had two linear ranges at 0.01-2.11 μM and 2.31-30.81 μM. The lower limits of detection and sensitivity were found at 0.62 nM (S/N = 3), and 24.33 μA μM-1 cm-2 respectively. The practicability test was applied for the determination of FTM in urine, blood serum and environmental aquatic fluid with satisfactory recovery obtained.
Collapse
Affiliation(s)
- Sivakumar Musuvadhi Babulal
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Jeyaraman Anupriya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
2
|
Yan L, Shi F, Zhang J, Niu Y, Huang L, Huang Y, Sun W. Electrochemical DNA biosensor based on platinum-gold bimetal decorated graphene modified electrode for the detection of Vibrio Parahaemolyticus specific tlh gene sequence. CURR ANAL CHEM 2021. [DOI: 10.2174/1573411017666211217164846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
By using bimetal nanocomposite modified electrode, the electrochemical DNA biosensor showed the advantages of high sensitivity, low cost, rapid response and convenient operation, which was applied for disease diagnosis, food safety, and biological monitoring.
Objective:
A nanocomposite consisting of platinum (Pt)-gold (Au) bimetal and two-dimensional graphene (GR) was synthesized by hydrothermal method, which was modified on the surface of carbon ionic liquid electrode and further used for the immobilization of probe ssDNA related to Vibrio Parahaemolyticus tlh gene to construct an electrochemical DNA sensor.
Method:
Potassium ferricyanide was selected as electrochemical indicator, cyclic voltammetry was used to study the electrochemical behaviours of different modified electrodes and differential pulse voltammetry was employed to test the analytical performance of this biosensor for the detection of target gene sequence.
Results:
This electrochemical DNA biosensor could detect the Vibrio Parahaemolyticus tlh gene sequence as the linear concentration in the range from 1.0×10-13 mol L-1 to 1.0×10-6 mol L-1 with the detection limit as 2.91×10-14 mol L-1 (3σ).
Conclusion:
This proposed electrochemical DNA biosensor could be used to identify the special gene sequence with good selectivity, low detection limit and wide detection range.
Collapse
Affiliation(s)
- Lijun Yan
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Fan Shi
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Jingyao Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yanyan Niu
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Lifang Huang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuhao Huang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
3
|
Koventhan C, Vinothkumar V, Chen SM. Development of an electrochemical sensor based on a cobalt oxide/tin oxide composite for determination of antibiotic drug ornidazole. NEW J CHEM 2021. [DOI: 10.1039/d1nj01345a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A schematic illustration of the electrochemical performance towards sensing of ODZ at the Co3O4/SnO2/GCE.
Collapse
Affiliation(s)
- Chelliah Koventhan
- Department of Chemical Engineering and Biotechnology
- College of Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Venkatachalam Vinothkumar
- Department of Chemical Engineering and Biotechnology
- College of Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology
- College of Engineering
- National Taipei University of Technology
- Taipei 10608
- Taiwan
| |
Collapse
|
4
|
Kokulnathan T, Vishnuraj R, Wang TJ, Kumar EA, Pullithadathil B. Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111276. [PMID: 32931965 DOI: 10.1016/j.ecoenv.2020.111276] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic contamination from the accumulation of pharmaceuticals has induced severe toxicological impact to the ecological environment, especially from non-steroidal anti-inflammatory drugs (NSAIDs). Real-time monitoring of flutamide, which is a class of NSAIDs, is very significant in environmental protection. In this work, we have synthesized the hexagonal-h boron nitride decorated on bismuth oxide (Bi2O3/h-BN) based nanocomposite for the effective electrochemical detection of flutamide (FTM). The structural and morphological information of the heterostructured Bi2O3/h-BN nanocomposite was analyzed by using a sequence of characterization methods. Voltammetric techniques were used to evaluate the analytical performance of the Bi2O3/h-BN modified screen-printed carbon electrode (SPCE) for the FTM detection. The Bi2O3/h-BN modified SPCE displays a synergetic catalytic effect for the reduction of FTM due to large surface area, numerous active sites, fast charge transfer and abundant defects. The proposed electrochemical sensing platform demonstrates high selectivity, low detection limit (9.0 nM), good linear ranges (0.04-87 μM) and short response time for the detection of FTM. The feasibility of the electrochemical sensor has been proved by the successful application to determine FTM in environmental samples.
Collapse
Affiliation(s)
- Thangavelu Kokulnathan
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | | | - Tzyy-Jiann Wang
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
| | - Elumalai Ashok Kumar
- Department of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Biji Pullithadathil
- Nanosensor Laboratory, PSG Institute of Advanced Studies, Coimbatore, 641 004, India
| |
Collapse
|
5
|
Ensafi AA, Talkhooncheh BM, Zandi‐Atashbar N, Rezaei B. Electrochemical Sensing of Flutamide Contained in Plasma and Urine Matrices Using NiFe
2
O
4
/rGO Nanocomposite, as an Efficient and Selective Electrocatalyst. ELECTROANAL 2020. [DOI: 10.1002/elan.202000048] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Ali Asghar Ensafi
- Department of ChemistryIsfahan University of Technology Isfahan 84156-83111 Iran
| | | | - Navid Zandi‐Atashbar
- Department of ChemistryIsfahan University of Technology Isfahan 84156-83111 Iran
| | - Behzad Rezaei
- Department of ChemistryIsfahan University of Technology Isfahan 84156-83111 Iran
| |
Collapse
|
6
|
Zare AR, Ensafi AA, Rezaei B. An impedimetric biosensor based on poly(l-lysine)-decorated multiwall carbon nanotubes for the determination of diazinon in water and fruits. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01741-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Niu X, Chen W, Wang X, Men Y, Wang Q, Sun W, Li G. A graphene modified carbon ionic liquid electrode for voltammetric analysis of the sequence of the Staphylococcus aureus nuc gene. Mikrochim Acta 2018; 185:167. [PMID: 29594481 DOI: 10.1007/s00604-018-2719-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 01/28/2018] [Indexed: 11/28/2022]
Abstract
The authors describe a voltammetric method for the detection of the nuc ssDNA sequence originating from Staphylococcus aureus by using a carbon ionic liquid electrode modified with electrodeposited three-dimensional graphene (3DGR). Probe ssDNA was electrostatically adsorbed on the modified electrode by a potentiostatic method. The porous structure and large surface area of 3DGR greatly increase the amount of immobilized probe ssDNA on the interface, which is beneficial for the reaction with target ssDNA. By using Methylene Blue (MB) as the electrochemical probe, the reduction peak current of MB (best measured at -0.30 V vs. SCE) can be used for detecting hybridization. The differential pulse voltammetric current of MB increases linearly in the 1.0 × 10-12 mol L-1 to 1.0 × 10-6 mol L-1 nuc concentration range, and the detection limit is 3.3 × 10-13 mol L-1 (at 3σ). The DNA sensor was successfully applied to the determination of the PCR product of the gene in pork. Graphical abstract Response of an electrochemical DNA biosensor based on the use of a carbon ionic liquid electrode modified with three-dimensional graphene. It enables sensitive voltammetric detection of the specific sequence of the Staphylococcus aureus nuc gene.
Collapse
Affiliation(s)
- Xueliang Niu
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Wei Chen
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China.,College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Xiuli Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Yongling Men
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Qin Wang
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China
| | - Wei Sun
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, People's Republic of China. .,Key Laboratory of Soft Chemistry and Functional Materials of Ministry of Education, College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| | - Guangjiu Li
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| |
Collapse
|