Preda D, Radu GL, Iorgulescu EE, Cheregi MC, David IG. Curcumin-Based Molecularly Imprinted Polymer Electropolymerized on Single-Use Graphite Electrode for Dipyridamole Analysis.
Molecules 2024;
29:4630. [PMID:
39407560 PMCID:
PMC11477586 DOI:
10.3390/molecules29194630]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A new molecularly imprinted polymer (MIP)-based disposable electrochemical sensor for dipyridamole (DIP) determination was obtained. The sensor was rapidly prepared by potentiodynamic electrochemical polymerization on a pencil graphite electrode (PGE) using curcumin (CUR) as a functional monomer and DIP as a template molecule. After the optimization of the conditions (pH, monomer-template ratio, scan rate, number of cyclic voltammetric cycles applied in the electro-polymerization process and extraction time of the template molecule) for MIP formation, DIP voltammetric behavior at the modified electrode (MIP_PGE) was investigated. DIP oxidation took place in a pH-dependent, irreversible mixed diffusion-adsorption controlled process. Differential pulse voltammetry (DPV) and adsorptive stripping differential pulse voltammetry (AdSDPV) were used to quantify DIP from pharmaceutical and tap water samples. Under optimized conditions (Britton-Robinson buffer at pH = 3.29), the obtained linear ranges were 5.00 × 10-8-1.00 × 10-5 mol/L and 5.00 × 10-9-1.00 × 10-7 mol/L DIP for DPV and AdSDPV, respectively. The limits of detection of the methods were 1.47 × 10-8 mol/L for DPV and 3.96 × 10-9 mol/L DIP for AdSDPV.
Collapse