1
|
Dhumal K, Dateer R, Mali A. Recent Catalytic Advancements in Organic Transformations Using Biogenically Synthesized Palladium Nanoparticles. Catal Letters 2023. [DOI: 10.1007/s10562-022-04258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
2
|
Abstract
Among transition metal nanoparticles, palladium nanoparticles (PdNPs) are recognized for their high catalytic activity in a wide range of organic transformations that are of academic and industrial importance. The increased interest in environmental issues has led to the development of various green approaches for the preparation of efficient, low-cost and environmentally sustainable Pd-nanocatalysts. Environmentally friendly solvents, non-toxic reducing reagents, biodegradable capping and stabilizing agents and energy-efficient synthetic methods are the main aspects that have been taken into account for the production of Pd nanoparticles in a green approach. This review provides an overview of the fundamental approaches used for the green synthesis of PdNPs and their catalytic application in sustainable processes as cross-coupling reactions and reductions with particular attention afforded to the recovery and reuse of the palladium nanocatalyst, from 2015 to the present.
Collapse
|
3
|
Kunatsa Y, Katerere DR. Checklist of African Soapy Saponin-Rich Plants for Possible Use in Communities' Response to Global Pandemics. PLANTS 2021; 10:plants10050842. [PMID: 33922037 PMCID: PMC8143558 DOI: 10.3390/plants10050842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Plants that exhibit foaming properties when agitated in aqueous solutions are commonly referred to as soapy plants, and they are used in different communities for washing, bathing, and hair shampooing. The frothing ability of these plants is attributed to saponins which are also well-documented to possess antimicrobial attributes. In the light of COVID-19, soap and hand hygiene have taken center stage. The pandemic has also revealed the low access to running water and commercial soaps in many marginalized and poor communities to the detriment of global health. Thus, soapy plants, either in their natural form or through incorporation in commercial products, may be a relevant additional weapon to assist communities to improve hand hygiene and contribute to curbing COVID-19 and other communicable infections. This review paper was compiled from a review of literature that was published between 1980 and 2020. We found 68 plant species, including those which are already used as traditional soaps. Our findings support the potential use of extracts from soapy plants because of their putative viricidal, bactericidal, and fungicidal activities for use in crude home-based formulations and possibly for developing natural commercial soap products.
Collapse
|
4
|
Wisetkomolmat J, Suksathan R, Puangpradab R, Kunasakdakul K, Jantanasakulwong K, Rachtanapun P, Sommano SR. Natural Surfactant Saponin from Tissue of Litsea glutinosa and Its Alternative Sustainable Production. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1521. [PMID: 33182339 PMCID: PMC7695332 DOI: 10.3390/plants9111521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 01/18/2023]
Abstract
In this research, we assessed the detergency properties along with chemical characteristic of the surfactant extracts from the most frequently cited detergent plants in Northern Thailand, namely, Sapindus rarak, Acacia concinna, and Litsea glutinosa. Moreover, as to provide the sustainable option for production of such valuable ingredients, plant tissue culture (PTC) as alternative method for industrial metabolite cultivation was also proposed herein. The results illustrated that detergent plant extracts showed moderate in foaming and detergency abilities compared with those of synthetic surfactant. The phytochemical analysis illustrated the positive detection of saponins in L. glutinosa plant extracts. The highest callus formation was found in L. glutinosa explant cultured with MS medium supplemented with 2.0 mg/L Indole-3-acetic acid (IAA). The callus extract was chemical elucidated using chromatography, which illustrated the presence of saponin similar to those from the crude leaf and Quillaja saponin extracts. Compact mass spectrometry confirmed that the surfactant was of the steroidal diagnostic type.
Collapse
Affiliation(s)
- Jiratchaya Wisetkomolmat
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ratchuporn Suksathan
- Research and Product Development, Department of Research and Conservation, Queen Sirikit Botanic Garden, The Botanical Garden Organisation, Chiang Mai 50180, Thailand; (R.S.); (R.P.)
| | - Ratchadawan Puangpradab
- Research and Product Development, Department of Research and Conservation, Queen Sirikit Botanic Garden, The Botanical Garden Organisation, Chiang Mai 50180, Thailand; (R.S.); (R.P.)
| | - Keawalin Kunasakdakul
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (K.J.); (P.R.)
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (K.J.); (P.R.)
- Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; (K.J.); (P.R.)
- Innovative Agriculture Research Centre, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|