1
|
Computer-Aided and AILDE Approaches to Design Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Int J Mol Sci 2022; 23:ijms23147822. [PMID: 35887168 PMCID: PMC9320391 DOI: 10.3390/ijms23147822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/19/2023] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model to obtain correlation information between HPPD inhibitory activity and the molecular structure. A credible and predictive Topomer CoMFA model was established by "split in two R-groups" cutting methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used to screen out more active compounds and was optimized through the auto in silico ligand directing evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds with theoretically good HPPD inhibition were obtained by combining the high-activity contribution substituents in the existing molecules with the R-group search via Topomer search. Molecular docking results revealed that most of the 22 fresh compounds could form stable π-π interactions. The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This study provides beneficial insights for subsequent HPPD inhibitor design.
Collapse
|
2
|
Zhai N, Wang C, Wu F, Xiong L, Luo X, Ju X, Liu G. Exploration of Novel Xanthine Oxidase Inhibitors Based on 1,6-Dihydropyrimidine-5-Carboxylic Acids by an Integrated in Silico Study. Int J Mol Sci 2021; 22:8122. [PMID: 34360886 PMCID: PMC8348919 DOI: 10.3390/ijms22158122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Xanthine oxidase (XO) is an important target for the effective treatment of hyperuricemia-associated diseases. A series of novel 2-substituted 6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (ODCs) as XO inhibitors (XOIs) with remarkable activities have been reported recently. To better understand the key pharmacological characteristics of these XOIs and explore more hit compounds, in the present study, the three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking, pharmacophore modeling, and molecular dynamics (MD) studies were performed on 46 ODCs. The constructed 3D-QSAR models exhibited reliable predictability with satisfactory validation parameters, including q2 = 0.897, R2 = 0.983, rpred2 = 0.948 in a CoMFA model, and q2 = 0.922, R2 = 0.990, rpred2 = 0.840 in a CoMSIA model. Docking and MD simulations further gave insights into the binding modes of these ODCs with the XO protein. The results indicated that key residues Glu802, Arg880, Asn768, Thr1010, Phe914, and Phe1009 could interact with ODCs by hydrogen bonds, π-π stackings, or hydrophobic interactions, which might be significant for the activity of these XOIs. Four potential hits were virtually screened out using the constructed pharmacophore model in combination with molecular dockings and ADME predictions. The four hits were also found to be relatively stable in the binding pocket by MD simulations. The results in this study might provide effective information for the design and development of novel XOIs.
Collapse
Affiliation(s)
- Na Zhai
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Chenchen Wang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Liwei Xiong
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China; (N.Z.); (C.W.); (F.W.); (X.L.); (X.J.)
| |
Collapse
|
3
|
Zhang Y, Liu J, Wu X, Yang S, Li Y, Liu S, Zhu S, Cao X, Xie Z, Lei X, Huang H, Peng J. Anti-chronic myeloid leukemia activity and quantitative structure-activity relationship of novel thiazole aminobenzamide derivatives. Bioorg Med Chem Lett 2021; 44:128116. [PMID: 34015503 DOI: 10.1016/j.bmcl.2021.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The anti-chronic myeloid leukemia activity of thiazole aminobenzamide derivatives in vitro was tested by a methanethiosulfonate (MTS)-based viability assay method, and the result showed that some compounds exhibited good inhibitory activities against human chronic myeloid leukemia cell line K562, imatinib-resistant strain K562/R and T135I mutant cell line BaF3-ABL-BCR-T315I. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods were used to analyze the relationship between the structure of thiazole aminobenzamide derivatives and the inhibition of K562/R cell activity. In CoMFA, Q2 was 0.899 and R2 was 0.963; in CoMSIA, Q2 and R2 were 0.840 and 0.903, respectively. These data indicated that the selected test set showed suitable external predictive ability. Combined with the contour map results, we further analyzed the three-dimensional quantitative structure (3D-QSAR) model. The results demonstrated that in the backbone of the thiazole aminobenzamide derivative, the substitution of a small group at R1 position, or the introduction of a hydrophilic group at R2 position, or the introduction of a large-volume amino acid at R3 position may be beneficial to improve the anti-CML activity of the compound.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province 421001, PR China
| | - Juan Liu
- Department of Pharmacy, Yiyang Central Hospital, Hunan Province 413000, PR China
| | - Xin Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Suming Yang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Yao Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Songbin Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Saifei Zhu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province 421001, PR China.
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang City, PR China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
4
|
Febuxostat-based amides and some derived heterocycles targeting xanthine oxidase and COX inhibition. Synthesis, in vitro and in vivo biological evaluation, molecular modeling and in silico ADMET studies. Bioorg Chem 2021; 113:104948. [PMID: 34052736 DOI: 10.1016/j.bioorg.2021.104948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
Various febuxostat derivatives comprising carboxamide functionalities and different substituted heterocycles were synthesized and evaluated for their biological activities as xanthine oxidase (XO) and cyclooxygenase (COX) inhibitors. All the tested compounds exhibited variable in vitro XO inhibitory activities (IC50 values 0.009-0.077 µM), among which the analog 17 has emerged as the most potent derivative (IC50 0.009 µM), representing nearly 3-times the potency of febuxostat (IC50 0.026 µM). The same analogs were further investigated for their in vitro COX-1 and COX-2 inhibitory activity, where fifteen analogs demonstrated recognizable COX-2 inhibitory potential (IC50 values range 0.04 - 0.1 µM), when correlated with celecoxib (IC50 0.05 µM), together with appreciable selectivity indices. Compounds 5a, 14b, 17, 19c, 19e and 21b that showed significant in vitro XO and/ or COX inhibitory potentials were further investigated for their in vivo hypouricemic as well as anti-inflammatory activities. Interestingly, the in vivo results were concordant with the collected in vitro data. Docking of compounds 5a, 14b, 17, 19c, 19e and 21b with the active sites of XO and COX-2 isozymes demonstrated superior binding profile compared with the reported ligands (febuxostat and celecoxib, respectively). Their docking scores were reasonable and cohering to a great extent with their corresponding in vitro IC50 values. Moreover, in silico computation of the predicted pharmacokinetic and toxicity properties (ADMET), together with the ligand efficiency (LE) of the same six compounds suggesting their liability to act as new orally active drug candidates with a predicted high safety profile.
Collapse
|
5
|
Zhang L, Liu L, Xiao A, Huang S, Li D. Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AbstractJute (Corchorus capsularis L.) is an annual herb of the bast fiber plant and has great potentials in food and medicinal usages because of its various bioactivities. In this study, ultrafiltration coupled with high-performance liquid chromatography-mass spectrometry was established for screening xanthine oxidase inhibitors from the jute leaves extract. Under the optimum screening conditions, three inhibitors were successfully screened and identified as chlorogenic acid, echinacoside, and isorhamnetin-rutinoside with UV and MS data. The fluorescent quenching analysis showed that three inhibitors quenched the fluorescence intensities of enzyme with different binding capacities. For further exploring the bioactivity of three inhibitors, the protective effects on hydrogen peroxide-induced oxidative stress was investigated using human normal liver cell (LO2), human gastric mucosal epithelial cell (GES-1), and human umbilical vein endothelial cell (HUVEC). As a result, they exhibited protective effects on three injured cells in dose-dependent manners without cytotoxicity. To evaluate the difference among different jute species obtained in our laboratories, the amounts of three compounds in ten samples were assessed and analyzed. The results showed that it could be divided into three groups. The jute leaves showed nutrient and medical potentials and deserved further research on pharmaceutical and biochemical utilization in future.
Collapse
Affiliation(s)
- Lang Zhang
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Liangliang Liu
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Aiping Xiao
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Siqi Huang
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| | - Defang Li
- Characteristic Fruit and Vegetable Research Office, Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, People's Republic of China
| |
Collapse
|
6
|
Chen Y, Gao Y, Wu F, Luo X, Ju X, Liu G. Computationally exploring novel xanthine oxidase inhibitors using docking-based 3D-QSAR, molecular dynamics, and virtual screening. NEW J CHEM 2020. [DOI: 10.1039/d0nj03221b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computationally exploring novel potential xanthine oxidase inhibitors using a systematic modeling study.
Collapse
Affiliation(s)
- Yanming Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Ya Gao
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Fengshou Wu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Xiaogang Luo
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Xiulian Ju
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| | - Genyan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
| |
Collapse
|