1
|
Design, synthesis, anticancer evaluation and molecular docking studies of new imidazo [2, 1-b] thiazole -based chalcones. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02916-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
2
|
An Insight into All Tested Small Molecules against Fusarium oxysporum f. sp. Albedinis: A Comparative Review. Molecules 2022; 27:molecules27092698. [PMID: 35566050 PMCID: PMC9099577 DOI: 10.3390/molecules27092698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/27/2022] Open
Abstract
Bayoud disease affects date palms in North Africa and the Middle East, and many researchers have used various methods to fight it. One of those methods is the chemical use of synthetic compounds, which raises questions centred around the compounds and common features used to prepare targeted molecules. In this review, 100 compounds of tested small molecules, collected from 2002 to 2022 in Web of Sciences, were divided into ten different classes against the main cause of Bayoud disease pathogen Fusarium oxysporum f. sp. albedinis (F.o.a.) with structure-activity relationship (SAR) interpretations for pharmacophore site predictions as (δ-···δ-), where 12 compounds are the most efficient (one compound from each group). The compounds, i.e., (Z)-1-(1.5-Dimethyl-1H-pyrazole-3-yl)-3-hydroxy but-2-en-1-one 7, (Z)-3-(phenyl)-1-(1,5-dimethyl-1H-pyrazole-3-yl)-3-hydroxyprop-2-en-1-one 23, (Z)-1-(1,5-Dimethyl-1H-pyrazole-3-yl)-3-hydroxy-3-(pyridine-2-yl)prop-2-en-1-one 29, and 2,3-bis-[(2-hydroxy-2-phenyl)ethenyl]-6-nitro-quinoxaline 61, have antifungal pharmacophore sites (δ-···δ-) in common in N1---O4, whereas other compounds have only one δ- pharmacophore site pushed by the donor effect of the substituents on the phenyl rings. This specificity interferes in the biological activity against F.o.a. Further understanding of mechanistic drug-target interactions on this subject is currently underway.
Collapse
|
3
|
Aggarwal R, Hooda M, Kumar P, Jain N, Dubey GP, Chugh H, Chandra R. Visible-Light-Prompted Synthesis and Binding Studies of 5,6-Dihydroimidazo[2,1- b]thiazoles with BSA and DNA Using Biophysical and Computational Methods. J Org Chem 2022; 87:3952-3966. [PMID: 35235320 DOI: 10.1021/acs.joc.1c02471] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fused heterocyclic systems containing a bridgehead nitrogen atom have emerged as imperative pharmacophores in the design and development of new drugs. Among these heterocyclic moieties, the imidazothiazole scaffold has long been used in medicinal chemistry for the treatment of various diseases. In this study, we have established a simplistic and environmentally safe regioselective protocol for the synthesis of 5,6-dihydroimidazo[2,1-b]thiazole derivatives from easily available reactants. The reaction proceeds through in situ formation of the α-bromodiketones ensuing trap with imidazolidine-2-thione to provide these versatile bicyclic heterocycles in excellent yields. The synthesized compounds were screened through the molecular docking approach for the most stable complex formation with bovine serum albumin (BSA) and calf thymus deoxyribonucleic acid (ctDNA). The selected compound was further studied using ex vivo binding studies, which revealed moderate interactions with BSA and ctDNA. The binding studies were performed using biophysical approaches including UV-visible spectroscopy, steady-state fluorescence, circular dichroism (CD), and viscosity parameters.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India.,CSIR-National Institute of Science Communication and Policy Research, New Delhi 110012, India
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Naman Jain
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Gyan Prakash Dubey
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Heerak Chugh
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
4
|
Goswami M, Dutta A, Paul P, Nongkhlaw R. Recent Developments on Catalyst‐Free, Visible‐Light‐Triggered Synthesis of Heterocyclic Scaffolds and Their Mechanistic Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Munmee Goswami
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Arup Dutta
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Pooja Paul
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| | - Rishanlang Nongkhlaw
- Centre for Advanced Studies in Chemistry Department of Chemistry North-Eastern Hill University Shillong 793022 INDIA
| |
Collapse
|
5
|
Borrego-Muñoz P, Ospina F, Quiroga D. A Compendium of the Most Promising Synthesized Organic Compounds against Several Fusarium oxysporum Species: Synthesis, Antifungal Activity, and Perspectives. Molecules 2021; 26:3997. [PMID: 34208916 PMCID: PMC8271819 DOI: 10.3390/molecules26133997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/17/2022] Open
Abstract
Vascular wilt caused by F. oxysporum (FOX) is one of the main limitations of producing several agricultural products worldwide, causing economic losses between 40% and 100%. Various methods have been developed to control this phytopathogen, such as the cultural, biological, and chemical controls, the latter being the most widely used in the agricultural sector. The treatment of this fungus through systemic fungicides, although practical, brings problems because the agrochemical agents used have shown mutagenic effects on the fungus, increasing the pathogen's resistance. The design and the synthesis of novel synthetic antifungal agents used against FOX have been broadly studied in recent years. This review article presents a compendium of the synthetic methodologies during the last ten years as promissory, which can be used to afford novel and potential agrochemical agents. The revision is addressed from the structural core of the most active synthetic compounds against FOX. The synthetic methodologies implemented strategies based on cyclo condensation reactions, radical cyclization, electrocyclic closures, and carbon-carbon couplings by metal-organic catalysis. This revision contributes significantly to the organic chemistry, supplying novel alternatives for the use of more effective agrochemical agents against F. oxysporum.
Collapse
Affiliation(s)
| | | | - Diego Quiroga
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Campus Nueva Granada, Universidad Militar, Nueva Granada, Cajicá 250247, Colombia; (P.B.-M.); (F.O.)
| |
Collapse
|
6
|
Kaddouri Y, Abrigach F, Ouahhoud S, Benabbes R, El Kodadi M, Alsalme A, Al-Zaqri N, Warad I, Touzani R. Mono-Alkylated Ligands Based on Pyrazole and Triazole Derivatives Tested Against Fusarium oxysporum f. sp. albedinis: Synthesis, Characterization, DFT, and Phytase Binding Site Identification Using Blind Docking/Virtual Screening for Potent Fophy Inhibitors. Front Chem 2020; 8:559262. [PMID: 33363103 PMCID: PMC7759635 DOI: 10.3389/fchem.2020.559262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
Twelve recent compounds, incorporating several heterocyclic moieties such as pyrazole, thiazole, triazole, and benzotriazole, made in excellent yield up to 37–99.6%. They were tested against Fusarium oxysporum f. sp. albedinis fungi (Bayoud disease), where the best results are for compounds 2, 4, and 5 with IC50 = 18.8–54.4 μg/mL. Density functional theory (DFT) study presented their molecular reactivity, while the docking simulations to describe the synergies between the trained compounds of dataset containing all the tested compounds (57 molecules) and F. oxysporum phytase domain (Fophy) enzyme as biological target. By comparing the results of the docking studies for the Fophy protein, it is found that compound 5 has the best affinity followed by compounds 2 and 4, so there is good agreement with the experimental results where their IC50 values are in the following order: 74.28 (5) < 150 (2) < 214.10 (4), using Blind docking/virtual screening of the homology modeled protein and two different tools as Autodock Vina and Dockthor web tool that gave us predicted sites for further antifungal drug design.
Collapse
Affiliation(s)
- Yassine Kaddouri
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Farid Abrigach
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Sabir Ouahhoud
- Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Redouane Benabbes
- Laboratory of Biochemistry (LB), Department of Biology, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Mohamed El Kodadi
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco.,Centre Régional des Métiers de l'Education et de Formation Oujda, Oriental, Morocco
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.,Department of Chemistry, College of Science, Ibb University, Ibb, Yemen
| | - Ismail Warad
- Department of Chemistry, Science College, An-Najah National University, Nablus, Palestine
| | - Rachid Touzani
- Laboratory of Applied Chemistry and Environment (LCAE), Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| |
Collapse
|
7
|
Saliyeva LN, Diachenko IV, Vas’kevich RI, Slyvka NY, Vovk MV. Imidazothiazoles and their Hydrogenated Analogs: Methods of Synthesis and Biomedical Potential. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02827-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Afsina Abdulla CM, Neetha M, Aneeja T, Anilkumar G. Synthesis and Applications of Imidazothiazoles: An Overview. ChemistrySelect 2020. [DOI: 10.1002/slct.202002842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- C. M. Afsina Abdulla
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills, Kottayam Kerala India 686560
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills, Kottayam Kerala India 686560
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills, Kottayam Kerala India 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills, Kottayam Kerala India 686560
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills, Kottayam Kerala India 686560
| |
Collapse
|