1
|
Javahershenas R, Nikzat S. Recent developments using malononitrile in ultrasound-assisted multicomponent synthesis of heterocycles. ULTRASONICS SONOCHEMISTRY 2024; 102:106741. [PMID: 38176128 PMCID: PMC10793181 DOI: 10.1016/j.ultsonch.2023.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Ultrasonic irradiation serves as a vigorous and environmentally sustainable approach for augmenting multicomponent reactions (MCRs), offering benefits such as thermal enhancement, agitation, and activation, among others. Malononitrile emerges as a versatile reagent in this context, participating in a myriad of MCRs to produce structurally diverse heterocyclic frameworks. This review encapsulates the critical role of malononitrile in the sonochemical multicomponent synthesis of these heterocyclic structures. The paper further delves into the biochemical and pharmacological implications of these heterocycles, elucidating their reaction mechanisms as well as delineating the method's scope and limitations. We furnish an overview of the merits and challenges inherent to this synthetic approach and offer insights for potential avenues in future research.
Collapse
Affiliation(s)
- Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | - Sahand Nikzat
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.
| |
Collapse
|
2
|
Mohamadpour F. A new role for concentrated solar radiation (CSR) as a renewable heat source for the catalyst-solvent free synthesis of tetrahydrobenzo[b]pyran scaffolds. Sci Rep 2023; 13:11485. [PMID: 37460799 DOI: 10.1038/s41598-023-38662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Increased energy consumption as a result of population growth and industrialization necessitates the use of renewable energy sources in the field of chemistry. Nonrenewable energy sources release not only greenhouse gases but also other hazardous pollutants that are damaging to all living things. This plainly mandates the researchers' use of a renewable energy source that is both environmentally friendly and cost-effective. This study shows that a renewable energy source (sunlight) can be used to synthesize tetrahydrobenzo[b]pyran scaffolds using the Knoevenagel-Michael cyclocondensation of aldehyde derivatives, malononitrile, and dimedone via a three-condensation domino reaction. This research establishes a new role for solar energy as a renewable energy source for the synthesis of tetrahydrobenzo[b]pyran scaffolds under catalyst-solvent-free conditions, with outstanding yields, shorter reaction time, and great atom economy. This cyclization may also be done on a gram scale with free, safe, and clean energy from concentrated solar radiation (CSR), indicating the reaction's potential for industrial applications.
Collapse
|
3
|
Mohamadpour F. Carbazole-based photocatalyst (4CzIPN) as a novel donor-acceptor (D-A) fluorophore catalyzed gram-scale 2-amino-4H-chromene scaffolds photosynthesis via a proton-coupled electron transfer (PCET) process. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
4
|
Mohamadpour F. Synthesis of Tetrahydrobenzo[ b]pyrans Promoted by Sodium Stearate as a Lewis Base-Surfactant Combined Catalyst in an Aqueous Micellar Medium. ORG PREP PROCED INT 2023. [DOI: 10.1080/00304948.2022.2151812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Mohamadpour F. The development of knoevenagel-michael cyclocondensation through a single-electron transfer (SET)/energy transfer (EnT) pathway in the use of methylene blue (MB+) as a photo-redox catalyst. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Godarzbod F, Mirjafary Z, Saeidian H, Rouhani M. Palladium@silica-coated magnetic nanoparticles as efficient and recyclable catalysts for ligand-free Suzuki–Miyaura coupling reaction under mild conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04781-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Mohamadpour F. Methylene Blue as a Photo-Redox Catalyst: The Development Synthesis of Tetrahydrobenzo[b]pyran Scaffolds via a Single-Electron Transfer/Energy Transfer. Front Chem 2022; 10:934781. [PMID: 35923256 PMCID: PMC9339953 DOI: 10.3389/fchem.2022.934781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
In a green tandem reaction using aldehyde derivatives, malononitrile, and dimedone, a radical tandem Knoevenagel–Michael cyclocondensation reaction of tetrahydrobenzo[b]pyran scaffolds was developed. Using visible light as a sustainable energy source, methylene blue (MB+)-derived photo-excited state functions were employed in an aqueous solution as single-electron transfer (SET) and energy transfer catalysts. The range of yields is quite uniform (81–98%, average 92.18%), and the range of reaction time is very fast (2–7 min, average 3.7 min), and the point mentioned in the discussion is that the procedure tolerates a range of donating and withdrawing groups, while still giving very excellent yields. The reaction is fairly insensitive to the nature of the substituents. Research conducted in this project aims to develop a non-metallic cationic dye that is both inexpensive and widely available for more widespread use. In addition to energy efficiency and environmental friendliness, methylene blue also offers an excellent atom economy, time-saving features, and ease of use. As a result, a wide range of long-term chemical and environmental properties can be obtained. The turnover number and turnover frequency of tetrahydrobenzo[b]pyran scaffolds have been computed. Surprisingly, gram-scale cyclization is a possibility, implying that the technology may be applied in industries.
Collapse
|
8
|
Mohamadpour F. New Role for Photoexcited Na 2 Eosin Y via the Direct Hydrogen Atom Transfer Process in Photochemical Visible-Light-Induced Synthesis of 2-Amino-4 H-Chromene Scaffolds Under Air Atmosphere. Front Chem 2022; 10:880257. [PMID: 35755253 PMCID: PMC9218595 DOI: 10.3389/fchem.2022.880257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The Knoevenagel-Michael cyclocondensation of malononitrile, aryl aldehydes, and resorcinol was used as a multicomponent green tandem strategy for the metal-free synthesis of 2-amino-4H-chromene scaffolds. Through a visible-light-induced process, the photo-excited state functions derived from Na2 eosin Y were used as direct hydrogen atom transfer catalysts in aqueous ethanol at ambient temperature. The purpose of this study was to examine the further use of an organic dye that does not contain metal and is inexpensive and commercially available. Na2 eosin Y is synthesized by photochemical means using the least amount of catalyst, which results in excellent yields, energy efficiency, and environmental friendliness, high atom economy, time-saving features, and ease of operation. As a result, some properties of green and sustainable chemistry are met. This kind of cyclization can be performed on a gram scale, indicating the potential utility of this reaction in industry.
Collapse
|
9
|
Recent Developments in Nanocatalyzed Green Synthetic Protocols of Biologically Potent Diverse O-Heterocycles—A Review. Catalysts 2022. [DOI: 10.3390/catal12060657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The dynamic growth in green organic synthetic methodologies for diverse heterocyclic scaffolds has substantially contributed to the field of medicinal chemistry over the last few decades. The use of hybrid metal nanocatalysts (NCs) is one such benign strategy for ensuring the advancement of modern synthetic chemistry by adhering to the principles of green chemistry, which call for a sustainable catalytic system that converts reacting species into profitable chemicals at a faster rate and tends to reduce waste generation. The metal nanoparticles (NPs) enhance the exposed surface area of the catalytic active sites, thereby making it easier for reactants and metal NCs to have an effective interaction. Several review articles have been published on the preparation of metal NCs and their uses for various catalytic heterocyclic transformations. This review will summarize different metal NCs for the efficient green synthesis of various O-heterocycles. Furthermore, the review will provide a concise overview of the role of metal NCs in the synthesis of O-heterocycles and will be extremely useful to researchers working on developing novel green and simple synthetic pathways to various O-heterocyclic-derived molecules.
Collapse
|
10
|
A review on structural and magnetic properties of magnesium ferrite nanoparticles. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Sonawane HR, Deore JV, Chavan PN. Reusable Nano Catalysed Synthesis of Heterocycles: An Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202103900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshad R. Sonawane
- Department of Chemistry G. M. Vedak College of Science Tala 402111 Maharashtra India
| | - Jaydeep V. Deore
- Department of Chemistry G. M. Vedak College of Science Tala 402111 Maharashtra India
| | - Pravin N. Chavan
- Department of Chemistry Doshi Vakil College Arts College and GCUB Science & Commerce College Goregaon 402103 Maharashtra India
| |
Collapse
|
12
|
Samadi Garjaei S, Koukabi N, Nouri Parouch A. Nano-Fe 3O 4/In: a heterogeneous magnetic nanocatalyst for synthesis of tetrazole derivatives under solvent-free conditions. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Nadiya Koukabi
- Department of Chemistry, Semnan University, Semnan, Iran
| | | |
Collapse
|
13
|
Agarwal S, Sethiya A, Soni J, Sahiba N, Teli P. An Overview of Recent Advances in the Catalytic Synthesis of Substituted Pyrans. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Jay Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur
| |
Collapse
|
14
|
Mohamadpour F. Photoexcited Na2 eosin Y as direct hydrogen atom transfer (HAT) photocatalyst promoted photochemical metal-free synthesis of tetrahydrobenzo[b]pyran scaffolds via visible light-mediated under air atmosphere. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Mohamadpour F. Catalyst-Free and Solvent-Free Visible Light Assisted Synthesis of Tetrahydrobenzo[ b]Pyran Scaffolds at Room Temperature. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2006244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Machado IV, Dos Santos JRN, Januario MAP, Corrêa AG. Greener organic synthetic methods: Sonochemistry and heterogeneous catalysis promoted multicomponent reactions. ULTRASONICS SONOCHEMISTRY 2021; 78:105704. [PMID: 34454180 PMCID: PMC8406036 DOI: 10.1016/j.ultsonch.2021.105704] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 06/06/2023]
Abstract
Ultrasound is an essential technique to improve organic synthesis from the point of view of green chemistry, as it can promote better yields and selectivities, in addition to shorter reaction times when compared to the conventional methods. Heterogeneous catalysis is another pillar of sustainable chemistry being the recycling and reuse of the catalysts one of its great advantage. In the other hand, multicomponent reactions provide the synthesis of structurally diverse compounds, in a one-pot fashion, without isolation and purification of intermediates. Thus, the combination of these protocols has proved to be a powerful tool to obtain biologically active organic compounds with lower costs, time and energy consumption. Herein, we provide a comprehensive overview of advances on methods of organic synthesis that have been reported over the past ten years with focus on ultrasound-assisted multicomponent reactions under heterogeneous catalysis. In particular, we present pharmacologically important N- and O-heterocyclic compounds, considering their synthetic methods using green solvents, and catalyst recycling.
Collapse
Affiliation(s)
- Ingrid V Machado
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Jhonathan R N Dos Santos
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Marcelo A P Januario
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Arlene G Corrêa
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
17
|
Mohamadpour F. Per-6-NH 2-β-CD as Supramolecular Host and Reusable Aminocyclodextrin Promoted Solvent-Free Synthesis of 2-Amino-4 H-Chromene Scaffolds at Room Temperature. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1983615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Ultrasound assisted synthesis of pyrano[3,2-b]pyran and 7-tosyl-4,7-dihydropyrano[2,3-e]indole scaffolds using barium titanate nanoparticles. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01972-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
19
|
Mohamadpour F. Catalyst-free and solvent-free visible light irradiation-assisted Knoevenagel–Michael cyclocondensation of aryl aldehydes, malononitrile, and resorcinol at room temperature. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02763-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Shabani N, Heravi MRP, Babazadeh M, Ghasemi E, Amini M, Robertson C. 2-Aminoisoindoline-1,3-Dione-Functionalized Fe3O4/Chloro-Silane Core-Shell Nanoparticles as Reusable Catalyst: An Efficient Heterogeneous Magnetic Nanoparticles for Synthesis of 4H-Pyran Derivatives through Multicomponent Reaction. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1901124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Nemat Shabani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Mirzaagha Babazadeh
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Elnaz Ghasemi
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mojtaba Amini
- Faculty of Science, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Craig Robertson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, UK
| |
Collapse
|
21
|
Kadagathur M, Patra S, Sigalapalli DK, Shankaraiah N, Tangellamudi ND. Syntheses and medicinal chemistry of azepinoindolones: a look back to leap forward. Org Biomol Chem 2021; 19:738-764. [PMID: 33459333 DOI: 10.1039/d0ob02181d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nitrogen-containing heterocyclic scaffolds constitute nearly 75% of small molecules which favorably act as drug candidates. For the past few decades, numerous natural and synthetic indole-based scaffolds have been reported for their diverse pharmacological profiles. In particular, indole-fused azepines, termed azepinoindolones, have come under the radar of medicinal chemists owing to their synthetic and pharmacological importance. A plethora of literature reports has been generated thereof, which calls for the need for the compilation of information to understand their current status in drug discovery. Accumulating reports of evidence suggest that compounds containing this privileged scaffold display their cytotoxic effects via inhibition of kinase, topoisomerase I, mitochondrial malate dehydrogenase (mMDH), and tubulin polymerization and as DNA minor groove binding agents. Herein, we endeavor to present a closer look at the advancements of various synthetic and derivatization methods of azepinoindolone-based compounds. We have further extended our efforts to discuss the pharmacological effects of azepinoindolones in the whole range of medicinal chemistry as anti-Alzheimer, anticancer, anti-inflammatory, antidiabetic, antileishmanial, and antipyranosomal agents and as drug delivery vectors. Our analysis of recent advances reveals that azepinoindolones will continue to serve as potential pharmaceutical modalities in the years to come and their substantial pool of synthetic methods will be ever expanding.
Collapse
Affiliation(s)
- Manasa Kadagathur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Sandip Patra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Dilep Kumar Sigalapalli
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| | - Neelima D Tangellamudi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad-500037, India.
| |
Collapse
|
22
|
Godarzbod F, Mirjafary Z, Saeidian H, Rouhani M. Highly efficient synthesis of silica‐coated magnetic nanoparticles modified with iminodiacetic acid applied to synthesis of 1,2,3‐triazoles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Farideh Godarzbod
- Department of Chemistry, Tehran Science and Research Branch Islamic Azad University Tehran Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Tehran Science and Research Branch Islamic Azad University Tehran Iran
| | - Hamid Saeidian
- Department of Science Payame Noor University Tehran Iran
| | - Morteza Rouhani
- Department of Chemistry, Tehran Science and Research Branch Islamic Azad University Tehran Iran
| |
Collapse
|
23
|
Synthesis and antibacterial study of 2-amino-4H-pyrans and pyrans annulated heterocycles catalyzed by sulfated polysaccharide-coated BaFe12O19 nanoparticles. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04168-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|