Mourad SS, Barary MA, El-Yazbi AF. Simple simultaneous analysis of various cardiovascular drug mixtures with vincamine: comparative eco-friendly assessment.
BMC Chem 2024;
18:197. [PMID:
39390600 PMCID:
PMC11468470 DOI:
10.1186/s13065-024-01303-2]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The development of two eco-friendly analytical methods for the simultaneous determination of eight cardiovascular drugs; hydrochlorothiazide (HCT), captopril (CPL), lisinopril (LSP), valsartan (VAL), atorvastatin (ATR), bisoprolol (BSL), amlodipine (AML) and carvedilol (CVL); alongside with the nutraceutical vincamine (VIC) is essential for sustainable pharmaceutical analysis. This study explores the application of Micellar Electro Kinetic Chromatography (MEKC) and High-Performance Liquid Chromatography (HPLC) for this purpose. In MEKC method, the separation was done using fused silica capillary (41.5 cm × 50 µm id) and a back ground electrolyte consisting of 50 mM borate buffer (pH 9) containing 50 mM sodium lauryl sulphate (SLS) and 10% organic modifier (Acetonitrile). In HPLC method, separation was performed on a ZORBAX Extend-C18 (4.6 × 250 mm, 5 µm) column, using a gradient mobile phase consisting of 50 mM phosphate buffer pH 3 and methanol. Both methods attained good linearity (r ≥ 0.9996) with low values of LOD and LOQ. Both methods were successfully applied in the determination of co-administered single, binary and ternary dosage form of the studied drugs. Moreover, application of various combinations of co-administered dosage forms was achieved in rat plasma, confirming the applicability of these methods in different matrices. The use of micellar solutions in MEKC enhances separation efficiency while reducing the need for organic solvents, aligning with green chemistry principles. HPLC methods were optimized using environmentally benign solvents, ensuring reduced toxicity and waste production. The methodologies were evaluated through green, white, and blue metrics to ensure comprehensive sustainability, considering ecological impact, safety, and practical efficiency. These methods were not only cost-effective and time-saving but achieved high efficiency, sensitivity, and reproducibility making them ideal for routine use in pharmaceutical analysis.
Collapse