1
|
Tavakoli E, Sepehrmansourie H, Zolfigol MA, Khazaei A, Mohammadzadeh A, Ghytasranjbar E, As'Habi MA. Synthesis and Application of Task-Specific Bimetal-Organic Frameworks in the Synthesis of Biological Active Spiro-Oxindoles. Inorg Chem 2024; 63:5805-5820. [PMID: 38511836 DOI: 10.1021/acs.inorgchem.3c03742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The use of click chemistry as a smart and suitable method for the development of new heterogeneous catalysts is based on metal-organic frameworks as well as the production of organic compounds. The development of the click chemistry method can provide a new strategy to achieve superior properties of MOFs. Here, the two metals Co and Fe are used to create a bimetallic-organic framework. In the following, the click chemistry and postmodification method are well organized and an acidic heterogeneous porous catalyst is developed. This prepared catalyst was used as a highly efficient catalyst for the preparation of new spiro-oxindoles obtained through click chemistry with good to excellent yields (80-94%). This presented catalytic system can compete with the best reported catalytic systems. The findings showed that the presence of Co and Fe metals in the MOF, and the presence of the triazole ring on the catalyst, can increase the catalytic efficiencies. This study offers novel insights into the architecture of Metal-Organic Frameworks (MOFs), click chemistry, and biologically active compounds. Additionally, the research explores the antibacterial properties of the synthesized spiro-oxindoles and catalysts. The findings reveal significant antibacterial activities of the synthesized compounds against S. aureus, MRSA, and E. coli bacteria.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan 6517838683 Iran
| | - Abdolmajid Mohammadzadeh
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Elaheh Ghytasranjbar
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan 6519745777, Iran
| | - Mohammad Ali As'Habi
- Department of Phytochemistry, Medicinal Plant and Drugs research Institute, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
| |
Collapse
|
2
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
3
|
Khalaj M, Taherkhani M, Payen L, Klein A. A Sulfonic Acid Polyvinyl Pyridinium Ionic Liquid Catalyzes the Multi-Component Synthesis of Spiro-indoline-3,5'-pyrano[2,3- d]-pyrimidines and -Pyrazines. Molecules 2023; 28:molecules28093663. [PMID: 37175073 PMCID: PMC10180120 DOI: 10.3390/molecules28093663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
A sulfonated poly-4-vinyl pyridinium (PVPy-IL-B-SO3H) containing an acidic pyridinium/HSO3- ionic liquid moiety was prepared and used as a catalyst for the three-component reaction of malononitrile with 1-alkylindoline-2,3-diones and 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione or methyl 5-hydroxy-1H-pyrazole-3-carboxylate, leading to methyl 6'-amino-5'-cyano-2-oxo-2'H-spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylates or -3,4'-pyrano[2,3-d]pyrimidine]-6'-carbonitrile derivatives under ultrasonic irradiation conditions. The solid catalyst allows easy separation, is cheap, produces high yields under mild conditions, and does not require column chromatography for product isolation and purification.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Buinzahra Branch, Islamic Azad University, Buinzahra 1477893855, Iran
| | - Mahboubeh Taherkhani
- Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan 3481949479, Iran
| | - Leo Payen
- Institute for Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| | - Axel Klein
- Institute for Inorganic Chemistry, Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Greinstrasse 6, 50939 Köln, Germany
| |
Collapse
|
4
|
Wang Q, Li S, Yang G, Zou X, Yin X, Feng J, Chen H, Yang C, Zhang L, Lu C, Yue G. DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates. Molecules 2023; 28:molecules28073002. [PMID: 37049765 PMCID: PMC10095907 DOI: 10.3390/molecules28073002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Allylation of N-unsubstituted isatin N,N′-cyclic azomethine imines with Morita-Baylis-Hillman carbonates in the presence of 1–10 mol% DABCO in DCM at room temperature, rapidly gave N-allylated and N, β-diallylated isatin N,N′-cyclic azomethine imine 1,3-dipoles in moderate to high yields. The reaction features mild reaction conditions, easily practical operation, and short reaction times in most cases. Furthermore, the alkylated products were transformed into novel bicyclic spiropyrrolidine oxoindole derivatives through the [3+2] or [3+3]-cycloaddition with maleimides or Knoevenagel adducts.
Collapse
|
5
|
Synthesis of novel γ-butyrolactone-based phenazine compounds via microwave-assisted multicomponent domino reactions. Chem Heterocycl Compd (N Y) 2023. [DOI: 10.1007/s10593-023-03152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Regioselective synthesis of spirooxindole-pyrolidine via (GAP) chemistry process: Experimental and DFT study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Wang KK, Li YL, Chen R, Wang ZY, Li NB, Zhang LL, Gu S. Substrate-Controlled Regioselectivity Switchable [3 + 2] Annulations To Access Spirooxindole Skeletons. J Org Chem 2022; 87:8158-8169. [PMID: 35675122 DOI: 10.1021/acs.joc.2c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The additive-free [3 + 2] annulation from isatins, amino acids with 2-styrylbenzoxazoles, was described, providing a series of functional and structurally complex 3,3'-pyrrolidinyl-spirooxindole derivatives containing four contiguous and two quaternary stereogenic centers in high yields (up to 95%) and excellent diastereoselectivities (up to >25:1 dr). Interestingly, the reaction exhibits switchable regioselectivity depending on the substrate of amino acids. With proline or thioproline as the substrate, the reaction afforded α-regioselective spirooxindole skeletons. In contrast, when piperidine acid is the substrate, the reaction provided γ-regioselective spirooxindole skeletons.
Collapse
Affiliation(s)
- Kai-Kai Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Yan-Li Li
- Medical College, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Rongxiang Chen
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Zhan-Yong Wang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Ning-Bo Li
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Lu Lu Zhang
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| | - Shan Gu
- School of Pharmacy, Xinxiang University, Xinxiang, Henan 453000, P. R. China
| |
Collapse
|
8
|
Pareek A, Sivanandan ST, Bhagat S, Namboothiri IN. [3+2]-annulation of oxindolinyl-malononitriles with Morita–Baylis–Hillman acetates of nitroalkenes for the regio- and diastereoselective synthesis of spirocyclopentane-indolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Tavakoli E, Sepehrmansourie H, Zarei M, Zolfigol MA, Khazaei A, Hosseinifard M. Applications of novel composite UiO-66-NH 2/Melamine with phosphorous acid tags as a porous and efficient catalyst for the preparation of novel spiro-oxindoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03340b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new approach for the incorporation of phosphorous acid tags into a metal organic framework based on UiO-66-NH2/Melamine was introduced. This new catalyst was applied to the preparation of novel spiro-oxindoles under mild and green conditions.
Collapse
Affiliation(s)
- Elham Tavakoli
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838683, Iran
| | - Mojtaba Hosseinifard
- Department of Semiconductors, Materials and Energy Research Center, P.O. Box 31787-316, Karaj, Iran
| |
Collapse
|
10
|
Gholami M, Youseftabar-Miri L, Askarizadeh E, Hosseinjani-Pirdehi H. A concise, facile and MCR-GAP chemistry strategy for the synthesis of spiro[benzo[4,5]thiazolo[3,2-a]pyrano[2,3-d]pyrimidine-4,3′-indoline] derivatives as fluorescent cellular imaging agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Freidooni J, Rad-Moghadam K, Saeedi-Mirakmahaleh M. ZrO 2 and Rice-Husk-Xanthate Adduct: An Efficient Bioderived Catalyst for Synthesis of Spiro[4 H-pyran-4,3′-indoline]s. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jannat Freidooni
- Chemistry Department, Payam Noor University of Mashhad, Mashhad, Iran
| | - Kurosh Rad-Moghadam
- Chemistry Department, Faculty of sciences, University of Guilan, Rasht, Iran
| | | |
Collapse
|
12
|
Mirzaei F, Bayat M, Nasri S. A one-pot synthesis of piperidinium spirooxindoline-pyridineolates and indole-substituted pyridones in aqueous or ethanol medium. Mol Divers 2021; 26:2039-2048. [PMID: 34528212 DOI: 10.1007/s11030-021-10313-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022]
Abstract
Piperidinium spirooxindoline-pyridineolate has been prepared via one-pot multicomponent reaction of isatin, malononitrile, cyanoacetohydrazide, and piperidine in water or ethanol medium at room temperature. In addition, the synthesis of two indole-substituted 2-pyridones from indole-3-carbaldehyde, malononitrile, and cyanoacetohydrazide in the presence of piperidine is described.
Collapse
Affiliation(s)
- Faezeh Mirzaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
13
|
Nasri S, Bayat M, Mirzaei F. Recent Strategies in the Synthesis of Spiroindole and Spirooxindole Scaffolds. Top Curr Chem (Cham) 2021; 379:25. [PMID: 34002298 DOI: 10.1007/s41061-021-00337-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/07/2021] [Indexed: 11/28/2022]
Abstract
Spiroindole and spirooxindole scaffolds are very important spiro-heterocyclic compounds in drug design processes. Significant attention has been directed at obtaining molecules based on spiroindole and spirooxindole derivatives that have bioactivity against cancer cells, microbes, and different types of disease affecting the human body. Due to their inherent three-dimensional nature and ability to project functionalities in all three dimensions, they have become biological targets. Considering reports on spiroindole and spirooxindole-containing scaffolds in the past decades, introducing novel synthetic procedures has been an active research field of organic chemistry for well over a century and will be useful in creating new therapeutic agents. This review summarizes the pharmacological significance of spiroindole and spirooxindole scaffolds and highlights the latest strategies for their synthesis, focusing particularly on the past 2 years with typical examples. The spiroindole and spirooxindoles in this review are divided by the type and ring size of the spirocycle that is fused to indole or oxindole. Summarizing these procedures will be very beneficial for discovering novel therapeutic candidate molecules.
Collapse
Affiliation(s)
- Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Faezeh Mirzaei
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
14
|
Yue G, Jiang D, Dou Z, Li S, Feng J, Zhang L, Chen H, Yang C, Yin Z, Song X, Liang X, Wang X, Lu C. Rapid umpolung Michael addition of isatin N, N′-cyclic azomethine imine 1,3-dipoles with chalcones. NEW J CHEM 2021. [DOI: 10.1039/d1nj00960e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3,3-Disubstituted oxindoles were prepared rapidly in moderate to excellent yields with promising dr values by the t-BuONa-promoted Michael addition.
Collapse
|