Mekky A, El-Idreesy TT, Sanad SMH. Chloramine Trihydrate-mediated Tandem Synthesis of New Pyrrole and/or Arene-linked Mono- and Bis(1,3,4-oxadiazole) Hybrids as Potential Bacterial Biofilm and MRSA Inhibitors.
Chem Biodivers 2022;
19:e202200338. [PMID:
35818907 DOI:
10.1002/cbdv.202200338]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
A two-step tandem protocol was used to prepare new pyrrole and/or arene-linked bis(1,3,4-oxadiazoles) as well as their mono-analogues. The appropriate aldehydes and benzohydrazides were first condensed in ethanol at 80 °C to yield the corresponding N-benzoylhydrazones. Without isolation, the previous intermediates were subjected to a chloramine trihydrate-mediated oxidative cyclization in DMSO at 180 °C to yield the target molecules. The antibacterial potency of the (pyrrole-arene)-linked hybrids exceeded the arene-linked hybrids, and the bis(1,3,4-oxadiazoles) exceeded their mono-analogues against six different ATCC strains. Furthermore, the antibacterial efficacy of bis(1,3,4-oxadiazoles) 11c, and 11f, which are linked to pyrrole, and (p-tolylthio)methyl units, was highest against S. aureus, E. coli, and P. aeruginosa strains. Their MIC ranged between 3.8 and 3.9 µM, while their MBC values ranged between 7.7 and 15.8 µM. Additionally, they showed promising bacterial biofilm inhibitory activity against the same strains tested, with IC50 values ranging from 4.7 to 5.3 μM. They were also effective against MRSA ATCC:33591, and ATCC:43300 strains, with MIC, and MBC values ranging from 3.8-7.9 and 7.7-15.8 μM, respectively. When tested against the MCF-10A cell line, hybrids 11c, and 11f are cytotoxic at concentrations that are more than 6 and 13-fold higher than their MIC values against the S. aureus, E. coli, and P. aeruginosa strains, respectively. This lends support to both hybrids' potential as safe antibacterial agents.
Collapse