1
|
El Arroud FZ, El Fakhouri K, Zaarour Y, Griguer H, El Alami R, El Bouhssini M. Dielectric heating for controlling field and storage insect pests in host plants and food products with varying moisture content. Heliyon 2024; 10:e32765. [PMID: 38988521 PMCID: PMC11233960 DOI: 10.1016/j.heliyon.2024.e32765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
At the intersection of insect control and sustainability goals, dielectric heating emerges as a promising solution. In agriculture, where insect pests can reduce agricultural yields and the nutritional quality of crops under field and storage conditions. Chemical pesticides are often used to manage pests but owing to their deleterious consequences on humans and the environment, chemical-free treatments have become the preferred option. Among the existing options, applying radio frequency (RF) and microwave energy for the purpose of dielectric heating has proven to be a successful alternative to chemical pesticides for controlling some major insect pests. This review offers an overview of dielectric heating for pest control in both storage settings and field environments, which addresses pests that impact materials with varying moisture contents (MC). The review highlights the limitation of this technology in controlling insect pests within bulk materials, leading to non-uniform heating. Additionally, it discusses the application of this technology in managing pests affecting materials with high MC, which can result in the degradation of the host material's quality. The review suggests the combination of different techniques proven effective in enhancing heating uniformity, as well as leveraging the non-thermal effects of this technology to maintain the quality of the host material. This is the first review providing an overview of the challenges associated with employing this technology against high moisture content (MC) materials, making it more advantageous for controlling storage pests. Overall, the review indicates that research should particularly emphasize the utilization of this sustainable technology against insect pests that inflict damage on high (MC) substances.
Collapse
Affiliation(s)
- Fatima Zahrae El Arroud
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Karim El Fakhouri
- Agro BioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Youness Zaarour
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Hafid Griguer
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Rafiq El Alami
- DICE (Digital Innovation Center of Excellence), Department of Microwave Energy and Sensing (MES), Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| | - Mustapha El Bouhssini
- Agro BioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, BenGuerir, 43150, Morocco
| |
Collapse
|
2
|
Olfactory Sensilla and Olfactory Genes in the Parasitoid Wasp Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). INSECTS 2021; 12:insects12110998. [PMID: 34821797 PMCID: PMC8620382 DOI: 10.3390/insects12110998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Parasitic wasps are the major natural enemies of many organisms, and therefore they are broadly used in the biological control of numerous agricultural and horticultural pests. For example, Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of various agricultural pest insects, including Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, how T. pretiosum seek and localise host insect eggs is still not clear. The olfactory system is critical in guiding insect behaviours, including mating, feeding and oviposition, which play pivotal roles in the interactions between parasitoid wasps and their hosts. This project aimed to investigate T. pretiosum major olfactory tissue (antennae) and the olfactory genes, including odorant binding proteins (OBPs) and odorant receptors (ORs). T. pretiosum adult antennae were examined under scanning electron microscopy, and four types of olfactory sensilla were observed. Using T. pretiosum genome, 22 OBPs and 105 ORs were identified, which were further compared with olfactory genes of other Hymenoptera insect species. The expression patterns of OBPs between T. pretiosum male and female adults were examined to identify female- or male-specific OBPs. This study enriches our knowledge of T. pretiosum olfactory system and will help better use it in the integrated pest management (IPM) for many insect pest species. Abstract Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) is a tiny natural egg parasitoid of several agricultural pest insects, which has been widely used in the biological control for Plutella xylostella, Helicoverpa armigera, Spodoptera frugiperda and Ectomyelois ceratoniae. However, limited studies have been conducted on T. pretiosum olfactory system, which is critical in regulating insect behaviours. In this study, T. pretiosum adult antennae were investigated under ascanning electron microscopy (SEM). Four types of olfactory sensilla were observed, including chaetica sensilla (CS), trichoid sensilla (TS), faleate sensilla (FS) and placoid sensilla (PS). Using T. pretiosum genome, 22 putative odorant binding proteins (OBPs) and 105 odorant receptors (ORs) were identified, which were further compared with olfactory genes of Apis mellifera, Nasonia vitripennis and Diachasma alloeum. The expression patterns of OBPs between T. pretiosum male and female adults were examined by quantitative real time PCR (qRT-PCR) approaches. Three female-specific OBPs (TpreOBP19, TpreOBP15 and TpreOBP3) were identified, which may play crucial roles in T. pretiosum host-seeking and oviposition behaviours. This study enriches our knowledge of T. pretiosum olfactory genes and improves our understanding of its olfactory system.
Collapse
|
3
|
KLAI K, CHÉNAIS B, ZIDI M, DJEBBI S, CARUSO A, DENIS F, CONFAIS J, BADAWI M, CASSE N, MEZGHANI KHEMAKHEM M. Screening of Helicoverpa armigera Mobilome Revealed Transposable Element Insertions in Insecticide Resistance Genes. INSECTS 2020; 11:insects11120879. [PMID: 33322432 PMCID: PMC7764229 DOI: 10.3390/insects11120879] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Simple Summary Transposable elements (TEs) are mobile DNA sequences that can copy themselves within a host genome. TE-mediated changes in regulation can lead to massive and rapid changes in expression, responses that are potentially highly adaptive when an organism is faced with a mortality agent in the environment, such as an insecticide. Helicoverpa armigera shows a hight number of reported cases of insecticide resistance worldwide, having evolved resistance against pyrethroids, organophosphates, carbamates, organochlorines, and recently to macrocyclic lactone spinosad and several Bacillus thuringiensis toxins. In the present study, we conducted a TE annotation using combined approaches, and the results revealed a total of 8521 TEs, representing 236,132 copies, covering 12.86% of the H. armigera genome. In addition, we underlined TE insertions in defensome genes and we successfully identified nine TE insertions belonging to the RTE, R2, CACTA, Mariner and hAT superfamilies. Abstract The cotton bollworm Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) is an important pest of many crops that has developed resistance to almost all groups of insecticides used for its management. Insecticide resistance was often related to Transposable Element (TE) insertions near specific genes. In the present study, we deeply retrieve and annotate TEs in the H. armigera genome using the Pipeline to Retrieve and Annotate Transposable Elements, PiRATE. The results have shown that the TE library consists of 8521 sequences representing 236,132 TE copies, including 3133 Full-Length Copies (FLC), covering 12.86% of the H. armigera genome. These TEs were classified as 46.71% Class I and 53.29% Class II elements. Among Class I elements, Short and Long Interspersed Nuclear Elements (SINEs and LINEs) are the main families, representing 21.13% and 19.49% of the total TEs, respectively. Long Terminal Repeat (LTR) and Dictyostelium transposable element (DIRS) are less represented, with 5.55% and 0.53%, respectively. Class II elements are mainly Miniature Inverted Transposable Elements (MITEs) (49.11%), then Terminal Inverted Repeats (TIRs) (4.09%). Superfamilies of Class II elements, i.e., Transib, P elements, CACTA, Mutator, PIF-harbinger, Helitron, Maverick, Crypton and Merlin, were less represented, accounting for only 1.96% of total TEs. In addition, we highlighted TE insertions in insecticide resistance genes and we successfully identified nine TE insertions belonging to RTE, R2, CACTA, Mariner and hAT superfamilies. These insertions are hosted in genes encoding cytochrome P450 (CyP450), glutathione S-transferase (GST), and ATP-binding cassette (ABC) transporter belonging to the G and C1 family members. These insertions could therefore be involved in insecticide resistance observed in this pest.
Collapse
Affiliation(s)
- Khouloud KLAI
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Benoît CHÉNAIS
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Marwa ZIDI
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
| | - Salma DJEBBI
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
| | - Aurore CARUSO
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Françoise DENIS
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Johann CONFAIS
- URGI, INRAE, Université Paris-Saclay, 78026 Versailles, France;
- Plant Bioinformatics Facility, BioinfOmics, INRAE, Université Paris-Saclay, 78026 Versailles, France
| | - Myriam BADAWI
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
| | - Nathalie CASSE
- EA2160 Mer Molécules Santé, Le Mans Université, 72085 Le Mans, France; (B.C.); (A.C.); (F.D.); (M.B.)
- Correspondence: (N.C.); (M.M.K.)
| | - Maha MEZGHANI KHEMAKHEM
- Laboratory of Biochemistry and Biotechnology (LR01ES05), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (K.K.); (M.Z.); (S.D.)
- Correspondence: (N.C.); (M.M.K.)
| |
Collapse
|
4
|
Affiliation(s)
- E M G Fontes
- Embrapa Recursos Genéticos e Biotecnologia, PQEB s/n°, CEP 71510-230, Brasília, DF, Brazil.
| | - R Laumann
- Embrapa Recursos Genéticos e Biotecnologia, PQEB s/n°, CEP 71510-230, Brasília, DF, Brazil
| |
Collapse
|