1
|
St-Onge J, Burgio G, Rosenblatt SF, Waring TM, Hébert-Dufresne L. Paradoxes in the coevolution of contagions and institutions. Proc Biol Sci 2024; 291:20241117. [PMID: 39137891 PMCID: PMC11321847 DOI: 10.1098/rspb.2024.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024] Open
Abstract
Epidemic models study the spread of undesired agents through populations, be it infectious diseases through a country, misinformation in social media or pests infesting a region. In combating these epidemics, we rely neither on global top-down interventions, nor solely on individual adaptations. Instead, interventions commonly come from local institutions such as public health departments, moderation teams on social media platforms or other forms of group governance. Classic models, which are often individual or agent-based, are ill-suited to capture local adaptations. We leverage developments of institutional dynamics based on cultural group selection to study how groups attempt local control of an epidemic by taking inspiration from the successes and failures of other groups. Incorporating institutional changes into epidemic dynamics reveals paradoxes: a higher transmission rate can result in smaller outbreaks as does decreasing the speed of institutional adaptation. When groups perceive a contagion as more worrisome, they can invest in improved policies and, if they maintain these policies long enough to have impact, lead to a reduction in endemicity. By looking at the interplay between the speed of institutions and the transmission rate of the contagions, we find rich coevolutionary dynamics that reflect the complexity of known biological and social contagions.
Collapse
Affiliation(s)
- Jonathan St-Onge
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
| | - Giulio Burgio
- Departament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, Tarragona43007, Spain
| | - Samuel F. Rosenblatt
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
- Department of Computer Science, University of Vermont, Burlington, VT, USA
| | - Timothy M. Waring
- School of Economics, University of Maine, Orono, ME, USA
- Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Laurent Hébert-Dufresne
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
- Department of Computer Science, University of Vermont, Burlington, VT, USA
| |
Collapse
|
2
|
Waring TM, Wood ZT, Szathmáry E. Characteristic processes of human evolution caused the Anthropocene and may obstruct its global solutions. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220259. [PMID: 37952628 PMCID: PMC10645123 DOI: 10.1098/rstb.2022.0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/19/2023] [Indexed: 11/14/2023] Open
Abstract
We propose that the global environmental crises of the Anthropocene are the outcome of a ratcheting process in long-term human evolution which has favoured groups of increased size and greater environmental exploitation. To explore this hypothesis, we review the changes in the human ecological niche. Evidence indicates the growth of the human niche has been facilitated by group-level cultural traits for environmental control. Following this logic, sustaining the biosphere under intense human use will probably require global cultural traits, including legal and technical systems. We investigate the conditions for the evolution of global cultural traits. We estimate that our species does not exhibit adequate population structure to evolve these traits. Our analysis suggests that characteristic patterns of human group-level cultural evolution created the Anthropocene and will work against global collective solutions to the environmental challenges it poses. We illustrate the implications of this theory with alternative evolutionary paths for humanity. We conclude that our species must alter longstanding patterns of cultural evolution to avoid environmental disaster and escalating between-group competition. We propose an applied research and policy programme with the goal of avoiding these outcomes. This article is part of the theme issue 'Evolution and sustainability: gathering the strands for an Anthropocene synthesis'.
Collapse
Affiliation(s)
- Timothy M. Waring
- Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| | - Zachary T. Wood
- Department of Biology, Colby College, 4000 Mayflower Hill Drive, Waterville, ME 04901, USA
| | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Pöcking, Germany
- Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest, Hungary
| |
Collapse
|
3
|
Andersson C, Czárán T. The transition from animal to human culture-simulating the social protocell hypothesis. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210416. [PMID: 36688383 PMCID: PMC9869448 DOI: 10.1098/rstb.2021.0416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/26/2022] [Indexed: 01/24/2023] Open
Abstract
The origin of human cumulative culture is commonly envisioned as the appearance (some 2.0-2.5 million years ago) of a capacity to faithfully copy the know-how that underpins socially learned traditions. While certainly plausible, this story faces a steep 'startup problem'. For example, it presumes that ape-like early Homo possessed specialized cognitive capabilities for faithful know-how copying and that early toolmaking actually required such a capacity. The social protocell hypothesis provides a leaner story, where cumulative culture may have originated even earlier-as cumulative systems of non-cumulative traditions ('institutions' and 'cultural lifestyles'), via an emergent group-level channel of cultural inheritance. This channel emerges as a side-effect of a specific but in itself unremarkable suite of social group behaviours. It is independent of faithful know-how copying, and an ancestral version is argued to persist in Pan today. Hominin cultural lifestyles would thereby have gained in complexity and sophistication, eventually becoming independent units of selection (socionts) via a cultural evolutionary transition in individuality, abstractly similar to the origin of early cells. We here explore this hypothesis by simulating its basic premises. The model produces the expected behaviour and reveals several additional and non-trivial phenomena as fodder for future work. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Claes Andersson
- Department of Space, Earth and Environment, Division for Physical Resource Theory, Complex System Group, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- European Centre for Living Technology, University of Venice Ca’ Foscari, Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy
| | - Tamás Czárán
- Evolutionary Systems Research Group, ELKH Centre for Ecological Research, Karolina Road 29, H-1113 Budapest, Hungary
- Institute of Evolution, ELKH Centre for Ecological Research, Karolina Road 29, H-1113 Budapest, Hungary
- ELKH-ELTE Theoretical Biology and Evolutionary Research Group, Eötvös Loránd University, Egyetem tér 1–3, H-1053 Budapest, Hungary
| |
Collapse
|
4
|
McShea DW. Four reasons for scepticism about a human major transition in social individuality. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210403. [PMID: 36688394 PMCID: PMC9869438 DOI: 10.1098/rstb.2021.0403] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The 'major transitions in evolution' are mainly about the rise of hierarchy, new individuals arising at ever higher levels of nestedness, in particular the eukaryotic cell arising from prokaryotes, multicellular individuals from solitary protists and individuated societies from multicellular individuals. Some lists include human societies as a major transition, but based on a comparison with the non-human transitions, there are reasons for scepticism. (i) The foundation of the major transitions is hierarchy, but the cross-cutting interactions in human societies undermine hierarchical structure. (ii) Natural selection operates in three modes-stability, growth and reproductive success-and only the third produces the complex adaptations seen in fully individuated higher levels. But human societies probably evolve mainly in the stability and growth modes. (iii) Highly individuated entities are marked by division of labour and commitment to morphological differentiation, but in humans differentiation is mostly behavioural and mostly reversible. (iv) As higher-level individuals arise, selection drains complexity, drains parts, from lower-level individuals. But there is little evidence of a drain in humans. In sum, a comparison with the other transitions gives reasons to doubt that human social individuation has proceeded very far, or if it has, to doubt that it is a transition of the same sort. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
|
5
|
Carmel Y, Shavit A, Lamm E, Szathmáry E. Human socio-cultural evolution in light of evolutionary transitions: introduction to the theme issue. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210397. [PMID: 36688397 PMCID: PMC9869440 DOI: 10.1098/rstb.2021.0397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Human societies are no doubt complex. They are characterized by division of labour, multiple hierarchies, intricate communication networks and transport systems. These phenomena and others have led scholars to propose that human society may be, or may become, a new hierarchical level that may dominate the individual humans within it, similar to the relations between an organism and its cells, or an ant colony and its members. Recent discussions of the possibility of this major evolutionary transition in individuality (ETI) raise interesting and controversial questions that are explored in the present issue from four different complementary perspectives. (i) The general theory of ETIs. (ii) The unique aspects of cultural evolution. (iii) The evolutionary history and pre-history of humans. (iv) Specific routes of a possible human ETI. Each perspective uses different tools provided by different disciplines: biology, anthropology, cultural evolution, systems theory, psychology, economy, linguistics and philosophy of science. Altogether, this issue provides a broad and rich application of the notion of ETI to human past, present and perhaps also future evolution. It presents important case studies, new theoretical results and novel questions for future research. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Yohay Carmel
- Department of Environmental Engineering, Technion, Haifa, 32000, Israel
| | - Ayelet Shavit
- Department of Interdisciplinary Studies, Tel Hai College, 12208, Israel,Department of Humanities and Arts, Technion, 3200003, Israel
| | - Ehud Lamm
- The Cohn Institute for History and Philosophy of Science, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, 1121 Budapest, Hungary,Parmenides Foundation, 82343 Pöcking, Germany,Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös University, Budapest 1117, Hungary
| |
Collapse
|
6
|
Rainey PB. Major evolutionary transitions in individuality between humans and AI. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210408. [PMID: 36688400 PMCID: PMC9869444 DOI: 10.1098/rstb.2021.0408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
That humans might undergo future evolutionary transitions in individuality (ETIs) seems fanciful. However, drawing upon recent thinking concerning the origins of properties that underpin ETIs, I argue that certain ETIs are imminently realizable. Central to my argument is recognition that heritable variance in fitness at higher levels of organization can be externally imposed (scaffolded) by specific ecological structures and cultural practices. While ETIs to eusociality seem highly improbable, ETIs involving symbioses between humans and artificial intelligence (AI) can be readily envisaged. A necessary requirement is that fitness-affecting interactions between humans and AI devices are inherited by offspring. The Mendelian nature of human reproduction ensures that offspring resemble parents. Reproduction of AI devices requires nothing more than transference of algorithms from parental AI devices to devices that are assigned to offspring. This simple copying, combined with societal structures that require humans to carry AI devices, ensures heritable variance in fitness at the level of both interacting partners. Selection at the collective level will drive alignment of replicative fates and increase co-dependency, thus alleviating need for continual imposition of externally imposed scaffolds. I conclude by drawing attention to the immediacy of such transitions and express concern over possibilities for malevolent manipulation. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Paul B. Rainey
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany,Laboratoire Biophysique et Évolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
7
|
Davison DR, Michod RE. Steps to individuality in biology and culture. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210407. [PMID: 36688387 PMCID: PMC9869451 DOI: 10.1098/rstb.2021.0407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 01/24/2023] Open
Abstract
Did human culture arise through an evolutionary transition in individuality (ETI)? To address this question, we examine the steps of biological ETIs to see how they could apply to the evolution of human culture. For concreteness, we illustrate the ETI stages using a well-studied example, the evolution of multicellularity in the volvocine algae. We then consider how those stages could apply to a cultural transition involving integrated groups of cultural traditions and the hominins that create and transmit traditions. We focus primarily on the early Pleistocene and examine hominin carnivory and the cultural change from Oldowan to Acheulean technology. We use Pan behaviour as an outgroup comparison. We summarize the important similarities and differences we find between ETI stages in the biological and cultural realms. As we are not cultural anthropologists, we may overlook or be mistaken in the processes we associate with each step. We hope that by clearly describing these steps to individuality and illustrating them with cultural principles and processes, other researchers may build upon our initial exercise. Our analysis supports the hypothesis that human culture has undergone an ETI beginning with a Pan-like ancestor, continuing during the Pleistocene, and culminating in modern human culture. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Dinah R. Davison
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ 85721, USA
| | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, College of Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Carmel Y. Human societal development: is it an evolutionary transition in individuality? Philos Trans R Soc Lond B Biol Sci 2023; 378:20210409. [PMID: 36688399 PMCID: PMC9869447 DOI: 10.1098/rstb.2021.0409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An evolutionary transition in individuality (ETI) occurs when a previously independent organism becomes a lower level unit within a higher hierarchical level (for example, cells in an organism, ants in a colony). Using archaeological and historical accounts from the last 12 000 years, I empirically examine the proposition that human society increasingly functions as a higher hierarchical level within which individuals integrate as lower level units. I evaluate human societal development with respect to three criteria that together indicate complexity in biological systems and serve as an operationalization scheme for ETIs: size, inseparability and specialization. The size of the largest polity has increased seven orders of magnitude, from hundreds to billions. Inseparability became nearly complete since Mesopotamian city-states, following the first appearance of intricate specialization (division of labour). Connectivity within a polity has increased rapidly during the last few centuries, and particularly within the last few decades. In view of these results, I formulate the following hypothesis: human society is undergoing an evolutionary transition in individuality, driven by socio-cultural-technological processes. This proposition requires a detailed theoretical basis and further empirical testing. I propose four predictions derived from the hypothesis that may be used to test it. This article is part of the theme issue 'Human socio-cultural evolution in light of evolutionary transitions'.
Collapse
Affiliation(s)
- Yohay Carmel
- Faculty of Civil and Environmental Engineering, The Technion, Haifa 32000, Israel
| |
Collapse
|
9
|
Banisch S, Gaisbauer F, Olbrich E. Modelling Spirals of Silence and Echo Chambers by Learning from the Feedback of Others. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1484. [PMID: 37420504 DOI: 10.3390/e24101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 07/09/2023]
Abstract
What are the mechanisms by which groups with certain opinions gain public voice and force others holding a different view into silence? Furthermore, how does social media play into this? Drawing on neuroscientific insights into the processing of social feedback, we develop a theoretical model that allows us to address these questions. In repeated interactions, individuals learn whether their opinion meets public approval and refrain from expressing their standpoint if it is socially sanctioned. In a social network sorted around opinions, an agent forms a distorted impression of public opinion enforced by the communicative activity of the different camps. Even strong majorities can be forced into silence if a minority acts as a cohesive whole. On the other hand, the strong social organisation around opinions enabled by digital platforms favours collective regimes in which opposing voices are expressed and compete for primacy in public. This paper highlights the role that the basic mechanisms of social information processing play in massive computer-mediated interactions on opinions.
Collapse
Affiliation(s)
- Sven Banisch
- Institute of Technology Futures, Karlsruhe Institute of Technology, 76133 Karlsruhe, Germany
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
| | - Felix Gaisbauer
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
| | - Eckehard Olbrich
- Max Planck Institute for Mathematics in the Sciences, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Moser C, Smaldino PE. Organizational Development as Generative Entrenchment. ENTROPY (BASEL, SWITZERLAND) 2022; 24:879. [PMID: 35885102 PMCID: PMC9318524 DOI: 10.3390/e24070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022]
Abstract
A critical task for organizations is how to best structure themselves to efficiently allocate information and resources to individuals tasked with solving sub-components of the organization's central problems. Despite this criticality, the processes by which organizational structures form remain largely opaque within organizational theory, with most approaches focused on how structure is influenced by individual managerial heuristics, normative cultural perceptions, and trial-and-error. Here, we propose that a broad understanding of organizational formation can be aided by appealing to generative entrenchment, a theory from developmental biology that helps explain why phylogenetically diverse animals appear similar as embryos. Drawing inferences from generative entrenchment and applying it to organizational differentiation, we argue that the reason many organizations appear structurally similar is due to core informational restraints on individual actors beginning at the top and descending to the bottom of these informational hierarchies, which reinforces these structures via feedback between separate levels. We further argue that such processes can lead to the emergence of a variety of group-level traits, an important but undertheorized class of phenomena in cultural evolution.
Collapse
Affiliation(s)
- Cody Moser
- Department of Cognitive and Information Science, University of California, Merced, CA 95343, USA
| | - Paul E. Smaldino
- Department of Cognitive and Information Science, University of California, Merced, CA 95343, USA
- Center for Advanced Study in Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Ganesh K, Gabora L. Modeling Discontinuous Cultural Evolution: The Impact of Cross-Domain Transfer. Front Psychol 2022; 13:786072. [PMID: 35282262 PMCID: PMC8908956 DOI: 10.3389/fpsyg.2022.786072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
This paper uses autocatalytic networks to model discontinuous cultural transitions involving cross-domain transfer, using as an illustrative example, artworks inspired by the oldest-known uncontested example of figurative art: the carving of the Hohlenstein-Stadel Löwenmensch, or lion-human. Autocatalytic networks provide a general modeling setting in which nodes are not just passive transmitters of activation; they actively galvanize, or "catalyze" the synthesis of novel ("foodset-derived") nodes from existing ones (the "foodset.") This makes them uniquely suited to model how new structure grows out of earlier structure, i.e., cumulative, generative network growth. They have been used to model the origin and early evolution of biological life, and the emergence of cognitive structures capable of undergoing cultural evolution. We conducted a study in which six individual creators and one group generated music, prose, poetry, and visual art inspired by the Hohlenstein-Stadel Löwenmensch, and answered questions about the process. The data revealed four through-lines by which they expressed the Löwenmensch in an alternative art form: (1) lion-human hybrid, (2) subtracting from the whole to reveal the form within, (3) deterioration, and (4) waiting to be found with a story to tell. Autocatalytic networks were used to model how these four spontaneously derived through-lines form a cultural lineage from Löwenmensch to artist to audience. We used the resulting data from three creators to model the cross-domain transfer from inspirational source (sculpted figurine) to creative product (music, poetry, prose, visual art). These four spontaneously-generated threads of cultural continuity formed the backbone of this Löwenmensch-inspired cultural lineage, enabling culture to evolve even in the face of discontinuity at the level conventional categories or domains. We know of no other theory of cultural evolution that accommodates cross-domain transfer or other forms of discontinuity. The approach paves the way for a broad scientific framework for the origins of evolutionary processes.
Collapse
Affiliation(s)
| | - Liane Gabora
- Department of Psychology, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
12
|
Gabora L, Steel M. Modeling a Cognitive Transition at the Origin of Cultural Evolution Using Autocatalytic Networks. Cogn Sci 2021; 44:e12878. [PMID: 32909644 DOI: 10.1111/cogs.12878] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/23/2020] [Accepted: 06/11/2020] [Indexed: 01/22/2023]
Abstract
Autocatalytic networks have been used to model the emergence of self-organizing structure capable of sustaining life and undergoing biological evolution. Here, we model the emergence of cognitive structure capable of undergoing cultural evolution. Mental representations (MRs) of knowledge and experiences play the role of catalytic molecules, and interactions among them (e.g., the forging of new associations) play the role of reactions and result in representational redescription. The approach tags MRs with their source, that is, whether they were acquired through social learning, individual learning (of pre-existing information), or creative thought (resulting in the generation of new information). This makes it possible to model how cognitive structure emerges and to trace lineages of cumulative culture step by step. We develop a formal representation of the cultural transition from Oldowan to Acheulean tool technology using Reflexively Autocatalytic and Food set generated (RAF) networks. Unlike more primitive Oldowan stone tools, the Acheulean hand axe required not only the capacity to envision and bring into being something that did not yet exist, but hierarchically structured thought and action, and the generation of new MRs: the concepts EDGING, THINNING, SHAPING, and a meta-concept, HAND AXE. We show how this constituted a key transition toward the emergence of semantic networks that were self-organizing, self-sustaining, and autocatalytic, and we discuss how such networks replicated through social interaction. The model provides a promising approach to unraveling one of the greatest anthropological mysteries: that of why development of the Acheulean hand axe was followed by over a million years of cultural stasis.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury
| |
Collapse
|
13
|
Abstract
Natural selection successfully explains how organisms accumulate adaptive change despite that traits acquired over a lifetime are eliminated at the end of each generation. However, in some domains that exhibit cumulative, adaptive change-e.g. cultural evolution, and earliest life-acquired traits are retained; these domains do not face the problem that Darwin's theory was designed to solve. Lack of transmission of acquired traits occurs when germ cells are protected from environmental change, due to a self-assembly code used in two distinct ways: (i) actively interpreted during development to generate a soma, and (ii) passively copied without interpretation during reproduction to generate germ cells. Early life and cultural evolution appear not to involve a self-assembly code used in these two ways. We suggest that cumulative, adaptive change in these domains is due to a lower-fidelity evolutionary process, and model it using reflexively autocatalytic and foodset-generated networks. We refer to this more primitive evolutionary process as self-other reorganization (SOR) because it involves internal self-organizing and self-maintaining processes within entities, as well as interaction between entities. SOR encompasses learning but in general operates across groups. We discuss the relationship between SOR and Lamarckism, and illustrate a special case of SOR without variation.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia, Kelowna British Columbia, Canada
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
14
|
Waring TM, Wood ZT. Long-term gene-culture coevolution and the human evolutionary transition. Proc Biol Sci 2021; 288:20210538. [PMID: 34074122 PMCID: PMC8170228 DOI: 10.1098/rspb.2021.0538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/10/2021] [Indexed: 01/23/2023] Open
Abstract
It has been suggested that the human species may be undergoing an evolutionary transition in individuality (ETI). But there is disagreement about how to apply the ETI framework to our species, and whether culture is implicated as either cause or consequence. Long-term gene-culture coevolution (GCC) is also poorly understood. Some have argued that culture steers human evolution, while others proposed that genes hold culture on a leash. We review the literature and evidence on long-term GCC in humans and find a set of common themes. First, culture appears to hold greater adaptive potential than genetic inheritance and is probably driving human evolution. The evolutionary impact of culture occurs mainly through culturally organized groups, which have come to dominate human affairs in recent millennia. Second, the role of culture appears to be growing, increasingly bypassing genetic evolution and weakening genetic adaptive potential. Taken together, these findings suggest that human long-term GCC is characterized by an evolutionary transition in inheritance (from genes to culture) which entails a transition in individuality (from genetic individual to cultural group). Thus, research on GCC should focus on the possibility of an ongoing transition in the human inheritance system.
Collapse
Affiliation(s)
- Timothy M. Waring
- School of Economics, Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Zachary T. Wood
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| |
Collapse
|
15
|
Gabora L, Steel M. A model of the transition to behavioural and cognitive modernity using reflexively autocatalytic networks. J R Soc Interface 2020; 17:20200545. [PMID: 33109019 DOI: 10.1098/rsif.2020.0545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This paper proposes a model of the cognitive mechanisms underlying the transition to behavioural and cognitive modernity in the Upper Palaeolithic using autocatalytic networks. These networks have been used to model life's origins. More recently, they have been applied to the emergence of cognitive structure capable of undergoing cultural evolution. Mental representations of knowledge and experiences play the role of catalytic molecules, the interactions among them (e.g. the forging of new associations or affordances) play the role of reactions, and thought processes are modelled as chains of these interactions. We posit that one or more genetic mutations may have allowed thought to be spontaneously tailored to the situation by modulating the degree of (i) divergence (versus convergence), (ii) abstractness (versus concreteness), and (iii) context specificity. This culminated in persistent, unified autocatalytic semantic networks that bridged previously compartmentalized knowledge and experience. We explain the model using one of the oldest-known uncontested examples of figurative art: the carving of the Hohlenstein-Stadel Löwenmensch, or lion man. The approach keeps track of where in a cultural lineage each innovation appears, and models cumulative change step by step. It paves the way for a broad scientific framework for the origins of both biological and cultural evolutionary processes.
Collapse
Affiliation(s)
- Liane Gabora
- Department of Psychology, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada
| | - Mike Steel
- Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|