1
|
Gentile G, Perrone B, Morello G, Simone IL, Andò S, Cavallaro S, Conforti FL. Individual Oligogenic Background in p.D91A- SOD1 Amyotrophic Lateral Sclerosis Patients. Genes (Basel) 2021; 12:genes12121843. [PMID: 34946792 PMCID: PMC8701978 DOI: 10.3390/genes12121843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
The p.D91A is one of the most common ALS-causing SOD1 mutations and is known to be either recessive or dominant. The homozygous phenotype is characterized by prolonged survival and slow progression of disease, whereas the affected heterozygous phenotypes can vary. To date, no genetic protective factors located close to SOD1 have been associated with the mild progressive homozygous phenotype. Using Next Generation Sequencing (NGS), we characterized a small cohort of sporadic and familial p.D91A-SOD1 heterozygous (n = 2) or homozygous (n = 5) ALS patients, to reveal any additional contributing variant in 39 ALS-related genes. We detected unique sets of non-synonymous variants, four of which were of uncertain significance and several in untranslated regions of ALS-related genes. Our results supported an individual oligogenic background underlying both sporadic and familial p.D91A cases irrespective of their p.D91A mutant alleles. We suggest that a comprehensive genomic view of p.D91A-SOD1 ALS patients may be useful in identifying emerging variants and improving disease diagnosis as well as guiding precision medicine.
Collapse
Affiliation(s)
- Giulia Gentile
- Institute for Biomedical Research and Innovation, Department of Biomedical Sciences, National Research Council (CNR), 95126 Catania, Italy; (G.G.); (G.M.); (S.C.)
| | - Benedetta Perrone
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (B.P.); (S.A.)
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, Department of Biomedical Sciences, National Research Council (CNR), 95126 Catania, Italy; (G.G.); (G.M.); (S.C.)
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Sebastiano Andò
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (B.P.); (S.A.)
- Centro Sanitario, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, Department of Biomedical Sciences, National Research Council (CNR), 95126 Catania, Italy; (G.G.); (G.M.); (S.C.)
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (B.P.); (S.A.)
- Correspondence:
| |
Collapse
|
2
|
Morello G, Gentile G, Spataro R, Spampinato AG, Guarnaccia M, Salomone S, La Bella V, Conforti FL, Cavallaro S. Genomic Portrait of a Sporadic Amyotrophic Lateral Sclerosis Case in a Large Spinocerebellar Ataxia Type 1 Family. J Pers Med 2020; 10:jpm10040262. [PMID: 33276461 PMCID: PMC7712010 DOI: 10.3390/jpm10040262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Repeat expansions in the spinocerebellar ataxia type 1 (SCA1) gene ATXN1 increases the risk for amyotrophic lateral sclerosis (ALS), supporting a relationship between these disorders. We recently reported the co-existence, in a large SCA1 family, of a clinically definite ALS individual bearing an intermediate ATXN1 expansion and SCA1 patients with a full expansion, some of which manifested signs of lower motor neuron involvement. Methods: In this study, we employed a systems biology approach that integrated multiple genomic analyses of the ALS patient and some SCA1 family members. Results: Our analysis identified common and distinctive candidate genes/variants and related biological processes that, in addition to or in combination with ATXN1, may contribute to motor neuron degeneration phenotype. Among these, we distinguished ALS-specific likely pathogenic variants in TAF15 and C9ORF72, two ALS-linked genes involved in the regulation of RNA metabolism, similarly to ATXN1, suggesting a selective role for this pathway in ALS pathogenesis. Conclusions: Overall, our work supports the utility to apply personal genomic information for characterizing complex disease phenotypes.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (G.G.); (A.G.S.); (M.G.)
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy;
| | - Giulia Gentile
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (G.G.); (A.G.S.); (M.G.)
| | - Rossella Spataro
- ALS Clinical Research Center and Neurochemistry Laboratory, BioNeC, University of Palermo, 90127 Palermo, Italy; (R.S.); (V.L.B.)
| | - Antonio Gianmaria Spampinato
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (G.G.); (A.G.S.); (M.G.)
- Department of Mathematics and Computer Science, University of Catania, 95123 Catania, Italy
| | - Maria Guarnaccia
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (G.G.); (A.G.S.); (M.G.)
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, 95123 Catania, Italy;
| | - Vincenzo La Bella
- ALS Clinical Research Center and Neurochemistry Laboratory, BioNeC, University of Palermo, 90127 Palermo, Italy; (R.S.); (V.L.B.)
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Rende, Italy
- Correspondence: (F.L.C.); (S.C.); Tel.: +39-0984-496204 (F.L.C.); +39-095-7338111 (S.C.); Fax: +39-0984-496203 (F.L.C.); +39-095-7338110 (S.C.)
| | - Sebastiano Cavallaro
- Institute for Research and Biomedical Innovation (IRIB), Italian National Research Council (CNR), Via Paolo Gaifami, 18, 95125 Catania, Italy; (G.M.); (G.G.); (A.G.S.); (M.G.)
- Correspondence: (F.L.C.); (S.C.); Tel.: +39-0984-496204 (F.L.C.); +39-095-7338111 (S.C.); Fax: +39-0984-496203 (F.L.C.); +39-095-7338110 (S.C.)
| |
Collapse
|
3
|
Song X, Wang X, Ding L, He D, Sun J, Xi N, Yin Y, Peng H, Sun L. Identification of a novel heterozygous missense mutation of SEMA3E (c.1327G>A; p. Ala443Thr) in a labor induced fetus with CHARGE syndrome. Mol Genet Genomic Med 2019; 8:e1034. [PMID: 31691538 PMCID: PMC6978240 DOI: 10.1002/mgg3.1034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND CHARGE syndrome is a complex multisystem genetic disease. We aimed to find the potential gene mutation in the labor induced fetus with CHARGE syndrome. METHODS Genomic DNA was extracted from the fetal thigh muscle tissue and the peripheral blood of his parents. The resulting exomes were sequenced using whole exome sequencing (WES) followed by the selection of the candidate causative mutation genes. The deleteriousness of the identified variants was predicted. Analysis of multiple alignment of protein sequences and protein conserved domains was performed by online software. Finally, Sanger sequencing was applied for validation of the identified variants in the WES. RESULTS After sequencing and bioinformatics filtering, a heterozygous missense mutation of SEMA3E (c.1327G>A; p. Ala443Thr) was found in the fetus, while the mutation was absent in his parents. Genotyping results showed that the mutation cosegregated fully with definite CHARGE phenotypes between the fetus and his parents. This change was located in the Sema superfamily and highly conserved across different species. Sanger validation result was consistent with the WES analysis. CONCLUSION Our investigations suggested that the heterozygous missense mutation of SEMA3E (c.1327G>A; p. Ala443Thr) may be a potential causal variant in the fetus with CHARGE syndrome.
Collapse
Affiliation(s)
- Xiao Song
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Xueyan Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Li Ding
- Department of Radiology, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Dan He
- Department of Maternal and Child Health Management, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Jin Sun
- Department of Pharmacy, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Na Xi
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Yan Yin
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Hui Peng
- Department of Ultrasound, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| | - Lingling Sun
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Hospital for Women and Children, Chengdu, Sichuan, China
| |
Collapse
|