1
|
Alyazidi AS, Muthaffar OY, Shawli MK, Ahmed RA, Aljefri YF, Baaishrah LS, Jambi AT, Alotibi FA. Phenotypic and Molecular Spectrum of Guanidinoacetate N-Methyltransferase Deficiency: An Analytical Study of a Case Series and a Scoping Review of 53 Cases of Guanidinoacetate N-Methyltransferase. J Microsc Ultrastruct 2024; 12:81-90. [PMID: 39006040 PMCID: PMC11245129 DOI: 10.4103/jmau.jmau_16_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/24/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Background Guanidinoacetate methyltransferase deficiency (GAMT) is an autosomal recessive inborn error of metabolism. A condition that results from a pathogenic variant in the GAMT gene that maps to 19p13.3. The prevalence can be estimated to be up to 1:2,640,000 cases; countries such as Saudi Arabia could have a higher prevalence due to high consanguinity rates. The clinical manifestations that a patient could obtain are broad and start to manifest in the patients' early childhood years. Materials and Methods A thorough review of case reports in January 2022 was conducted. The retrieved literature was screened for demographic data. Patients of all ages were included. Qualitative variables were described as number and percentage (%), and quantitative data were described by the mean and standard deviation. In bivariate data, Chi-square test (χ2) was used and t-test for nonparametric variables. Results Gender distribution was 53% of males and 47% females. Reported age ranged from 8 to 31 months. At the age of onset, 50% of the cases were infants, 28% were toddlers, and 15% were children, concluding that 79% of the reported cases developed symptoms before 5 years old. 68% of the cases developed generalized seizures throughout their life. 84% of the cases expressed a form of developmental delay. 43% of the cases had intellectual disabilities and mental retardation that affected their learning process; most cases required special care. 23% of the affected cases were of consanguineous marriages, and 7% had affected relatives. Conclusion We described four novel case reports, the first to be reported in Saudi Arabia. Seizure was a leading finding in the majority of the cases. Developmental delay was broadly observed. Intellectual delay and language impairments are primary hallmarks. Further understanding and early diagnosis are recommended. Premarital testing of neurogenetic diseases using whole-exome sequencing is probably a future direction, especially in populations with high consanguinity rates.
Collapse
Affiliation(s)
- Anas S. Alyazidi
- Undergraduate Student, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Y. Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed K. Shawli
- Undergraduate Student, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Renad A. Ahmed
- Undergraduate Student, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yara Fahad Aljefri
- Undergraduate Student, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Layan Saleh Baaishrah
- Undergraduate Student, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulaziz T. Jambi
- Undergraduate Student, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A. Alotibi
- Undergraduate Student, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Yıldız Y, Ardıçlı D, Göçmen R, Yalnızoğlu D, Topçu M, Coşkun T, Tokatlı A, Haliloğlu G. Electro-clinical features and long-term outcomes in guanidinoacetate methyltransferase (GAMT) deficiency. Eur J Paediatr Neurol 2024; 49:66-72. [PMID: 38394710 DOI: 10.1016/j.ejpn.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE To evaluate clinical characteristics and long-term outcomes in patients with guanidinoacetate methyltransferase (GAMT) deficiency with a special emphasis on seizures and electroencephalography (EEG) findings. METHODS We retrospectively analyzed the clinical and molecular characteristics, seizure types, EEG findings, neuroimaging features, clinical severity scores, and treatment outcomes in six patients diagnosed with GAMT deficiency. RESULTS Median age at presentation and diagnosis were 11.5 months (8-12 months) and 63 months (18 months -11 years), respectively. Median duration of follow-up was 14 years. Global developmental delay (6/6) and seizures (5/6) were the most common symptoms. Four patients presented with febrile seizures. The age at seizure-onset ranged between 8 months and 4 years. Most common seizure types were generalized tonic seizures (n = 4) and motor seizures resulting in drop attacks (n = 3). Slow background activity (n = 5) and generalized irregular sharp and slow waves (n = 3) were the most common EEG findings. Burst-suppression and electrical status epilepticus during slow-wave sleep (ESES) pattern was present in one patient. Three of six patients had drug-resistant epilepsy. Post-treatment clinical severity scores showed improvement regarding movement disorders and epilepsy. All patients were seizure-free in the follow-up. CONCLUSIONS Epilepsy is one of the main symptoms in GAMT deficiency with various seizure types and non-specific EEG findings. Early diagnosis and initiation of treatment are crucial for better seizure and cognitive outcomes. This long-term follow up study highlights to include cerebral creatine deficiency syndromes in the differential diagnosis of patients with global developmental delay and epilepsy and describes the course under treatment.
Collapse
Affiliation(s)
- Yılmaz Yıldız
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Didem Ardıçlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Rahşan Göçmen
- Hacettepe University Faculty of Medicine, Department of Radiology, Turkey.
| | - Dilek Yalnızoğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| | - Meral Topçu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey
| | - Turgay Coşkun
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey
| | - Ayşegül Tokatlı
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Metabolism and Nutrition, Turkey.
| | - Göknur Haliloğlu
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Pediatric Neurology, Turkey.
| |
Collapse
|
3
|
Lyons EL, Watson D, Alodadi MS, Haugabook SJ, Tawa GJ, Hannah-Shmouni F, Porter FD, Collins JR, Ottinger EA, Mudunuri US. Rare disease variant curation from literature: assessing gaps with creatine transport deficiency in focus. BMC Genomics 2023; 24:460. [PMID: 37587458 PMCID: PMC10433598 DOI: 10.1186/s12864-023-09561-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Approximately 4-8% of the world suffers from a rare disease. Rare diseases are often difficult to diagnose, and many do not have approved therapies. Genetic sequencing has the potential to shorten the current diagnostic process, increase mechanistic understanding, and facilitate research on therapeutic approaches but is limited by the difficulty of novel variant pathogenicity interpretation and the communication of known causative variants. It is unknown how many published rare disease variants are currently accessible in the public domain. RESULTS This study investigated the translation of knowledge of variants reported in published manuscripts to publicly accessible variant databases. Variants, symptoms, biochemical assay results, and protein function from literature on the SLC6A8 gene associated with X-linked Creatine Transporter Deficiency (CTD) were curated and reported as a highly annotated dataset of variants with clinical context and functional details. Variants were harmonized, their availability in existing variant databases was analyzed and pathogenicity assignments were compared with impact algorithm predictions. 24% of the pathogenic variants found in PubMed articles were not captured in any database used in this analysis while only 65% of the published variants received an accurate pathogenicity prediction from at least one impact prediction algorithm. CONCLUSIONS Despite being published in the literature, pathogenicity data on patient variants may remain inaccessible for genetic diagnosis, therapeutic target identification, mechanistic understanding, or hypothesis generation. Clinical and functional details presented in the literature are important to make pathogenicity assessments. Impact predictions remain imperfect but are improving, especially for single nucleotide exonic variants, however such predictions are less accurate or unavailable for intronic and multi-nucleotide variants. Developing text mining workflows that use natural language processing for identifying diseases, genes and variants, along with impact prediction algorithms and integrating with details on clinical phenotypes and functional assessments might be a promising approach to scale literature mining of variants and assigning correct pathogenicity. The curated variants list created by this effort includes context details to improve any such efforts on variant curation for rare diseases.
Collapse
Affiliation(s)
- Erica L Lyons
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Daniel Watson
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Mohammad S Alodadi
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Sharie J Haugabook
- Division of Preclinical Innovation, Therapeutic Development Branch, Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gregory J Tawa
- Division of Preclinical Innovation, Therapeutic Development Branch, Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Fady Hannah-Shmouni
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Forbes D Porter
- Division of Translational Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jack R Collins
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Elizabeth A Ottinger
- Division of Preclinical Innovation, Therapeutic Development Branch, Therapeutics for Rare and Neglected Diseases (TRND) Program, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Uma S Mudunuri
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Expanding the neuroimaging findings of guanidinoacetate methyltransferase deficiency in an Iranian girl with a homozygous frameshift variant in the GAMT. Neurogenetics 2023; 24:67-78. [PMID: 36633690 DOI: 10.1007/s10048-022-00708-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023]
Abstract
Guanidinoacetate methyltransferase deficiency (GAMTD) is a treatable neurodevelopmental disorder with normal or nonspecific imaging findings. Here, we reported a 14-month-old girl with GAMTD and novel findings on brain magnetic resonance imaging (MRI).A 14-month-old female patient was referred to Myelin Disorders Clinic due to onset of seizures and developmental regression following routine vaccination at 4 months of age. Brain MRI, prior to initiation of treatment, showed high signal intensity in T2-weighted imaging in bilateral thalami, globus pallidus, subthalamic nuclei, substantia nigra, dentate nuclei, central tegmental tracts in the brainstem, and posterior periventricular white matter which was masquerading for mitochondrial leukodystrophy. Basic metabolic tests were normal except for low urine creatinine; however, exome sequencing identified a homozygous frameshift deletion variant [NM_000156: c.491del; (p.Gly164AlafsTer14)] in the GAMT. Biallelic pathogenic or likely pathogenic variants cause GAMTD. We confirmed the homozygous state for this variant in the proband, as well as the heterozygote state in the parents by Sanger sequencing.MRI features in GAMTD can mimic mitochondrial leukodystrophy. Pediatric neurologists should be aware of variable MRI findings in GAMTD since they would be misleading to other diagnoses.
Collapse
|
5
|
Almaghrabi MA, Muthaffar OY, Alahmadi SA, Abdulsbhan MA, Bamusa M, Aljezani MA, Bahowarth SY, Alyazidi AS, Aggad WS. GAMT Deficiency Among Pediatric Population: Clinical and Molecular Characteristics and Management. Child Neurol Open 2023; 10:2329048X231215630. [PMID: 38020815 PMCID: PMC10655665 DOI: 10.1177/2329048x231215630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: Analyze the treatment modalities used in real practice by synthesizing available literature. Methods: We reviewed and evaluated 52 cases of GAMT deficiency including 4 novel cases from Saudi Arabia diagnosed using whole-exome sequencing. All data utilized graphical presentation in the form of line charts and illustrated graphs. Results: The mean current age of was 117 months (±29.03) (range 12-372 months). The mean age of disease onset was 28.32 months (±13.68) (range 8 days - 252 months). The most prevalent symptom was developmental delays, mainly speech and motor, seizures, and intellectual disability. The male-to-female ratio was 3:1. Multiple treatments were used, with 54 pharmacological interventions, valproic acid being the most common. Creatinine monohydrate was the prevalent dietary intervention, with 25 patients reporting an improvement. Conclusion: The study suggests that efficient treatment with appropriate dietary intervention can improve patients' health, stressing that personalized treatment programs are essential in managing this disorder.
Collapse
Affiliation(s)
- Majdah A. Almaghrabi
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama Y. Muthaffar
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sereen A. Alahmadi
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mashael A. Abdulsbhan
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mashael Bamusa
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maram Ahmed Aljezani
- Division of Pediatrics Neurology, Department of Pediatrics, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Anas S. Alyazidi
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waheeb S. Aggad
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Heland S, Fields N, Ellery SJ, Fahey M, Palmer KR. The role of nutrients in human neurodevelopment and their potential to prevent neurodevelopmental adversity. Front Nutr 2022; 9:992120. [PMID: 36483929 PMCID: PMC9722743 DOI: 10.3389/fnut.2022.992120] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 06/21/2024] Open
Abstract
Nutritional deficits or excesses affect a huge proportion of pregnant women worldwide. Maternal nutrition has a significant influence on the fetal environment and can dramatically impact fetal brain development. This paper reviews current nutritional supplements that can be used to optimise fetal neurodevelopment and prevent neurodevelopmental morbidities, including folate, iodine, vitamin B12, iron, and vitamin D. Interestingly, while correcting nutritional deficits can prevent neurodevelopmental adversity, overcorrecting them can in some cases be detrimental, so care needs to be taken when recommending supplementation in pregnancy. The potential benefits of using nutrition to prevent neurodiversity is shown by promising nutraceuticals, sulforaphane and creatine, both currently under investigation. They have the potential to promote improved neurodevelopmental outcomes through mitigation of pathological processes, including hypoxia, inflammation, and oxidative stress. Neurodevelopment is a complex process and whilst the role of micronutrients and macronutrients on the developing fetal brain is not completely understood, this review highlights the key findings thus far.
Collapse
Affiliation(s)
- Sarah Heland
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
| | - Neville Fields
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Joan Ellery
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Michael Fahey
- Paediatric Neurology Unit, Monash Children’s Hospital, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
| | - Kirsten Rebecca Palmer
- Monash Women’s and Newborn, Monash Health, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Intellectual Disability and Brain Creatine Deficit: Phenotyping of the Genetic Mouse Model for GAMT Deficiency. Genes (Basel) 2021; 12:genes12081201. [PMID: 34440375 PMCID: PMC8391262 DOI: 10.3390/genes12081201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/17/2022] Open
Abstract
Guanidinoacetate methyltransferase deficiency (GAMT-D) is one of three cerebral creatine (Cr) deficiency syndromes due to pathogenic variants in the GAMT gene (19p13.3). GAMT-D is characterized by the accumulation of guanidinoacetic acid (GAA) and the depletion of Cr, which result in severe global developmental delay (and intellectual disability), movement disorder, and epilepsy. The GAMT knockout (KO) mouse model presents biochemical alterations in bodily fluids, the brain, and muscles, including increased GAA and decreased Cr and creatinine (Crn) levels, which are similar to those observed in humans. At the behavioral level, only limited and mild alterations have been reported, with a large part of analyzed behaviors being unaffected in GAMT KO as compared with wild-type mice. At the cerebral level, decreased Cr and Crn and increased GAA and other guanidine compound levels have been observed. Nevertheless, the effects of Cr deficiency and GAA accumulation on many neurochemical, morphological, and molecular processes have not yet been explored. In this review, we summarize data regarding behavioral and cerebral GAMT KO phenotypes, and focus on uncharted behavioral alterations that are comparable with the clinical symptoms reported in GAMT-D patients, including intellectual disability, poor speech, and autistic-like behaviors, as well as unexplored Cr-induced cerebral alterations.
Collapse
|
8
|
Modi BP, Khan HN, van der Lee R, Wasim M, Haaxma CA, Richmond PA, Drögemöller B, Shah S, Salomons G, van der Kloet FM, Vaz FM, van der Crabben SN, Ross CJ, Wasserman WW, van Karnebeek CD, Awan FR. Adult GAMT deficiency: A literature review and report of two siblings. Mol Genet Metab Rep 2021; 27:100761. [PMID: 33996490 PMCID: PMC8093930 DOI: 10.1016/j.ymgmr.2021.100761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 11/02/2022] Open
Abstract
Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum.
Collapse
Affiliation(s)
- Bhavi P. Modi
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Correspondence to: B. P. Modi, University of British Columbia, BC Children's Hospital Research Institute, 938 W 28 Ave, Vancouver, BC V5Z 4H4, Canada.
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Robin van der Lee
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Charlotte A. Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Phillip A. Richmond
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Britt Drögemöller
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Suleman Shah
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Gajja Salomons
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
| | - Frans M. van der Kloet
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands
| | - Fred M. Vaz
- Laboratory for Genetic Metabolic Diseases, Amsterdam University Medical Centres, Amsterdam, the Netherlands
- Dept. of Clinical Chemistry and Pediatrics, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, the Netherlands
| | | | - Colin J. Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wyeth W. Wasserman
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Clara D.M. van Karnebeek
- Centre for Molecular Medicine and Therapeutics, Dept. of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Centres, Amsterdam, Netherlands
- Department of Pediatric Metabolic Diseases, Amalia Children's Hospital, Radboud Centre for Mitochondrial Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
- United for Metabolic Diseases, the Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Correspondence to: F. R. Awan, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan.
| |
Collapse
|
9
|
Creatine Metabolism in Female Reproduction, Pregnancy and Newborn Health. Nutrients 2021; 13:nu13020490. [PMID: 33540766 PMCID: PMC7912953 DOI: 10.3390/nu13020490] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine metabolism is an important component of cellular energy homeostasis. Via the creatine kinase circuit, creatine derived from our diet or synthesized endogenously provides spatial and temporal maintenance of intracellular adenosine triphosphate (ATP) production; this is particularly important for cells with high or fluctuating energy demands. The use of this circuit by tissues within the female reproductive system, as well as the placenta and the developing fetus during pregnancy is apparent throughout the literature, with some studies linking perturbations in creatine metabolism to reduced fertility and poor pregnancy outcomes. Maternal dietary creatine supplementation during pregnancy as a safeguard against hypoxia-induced perinatal injury, particularly that of the brain, has also been widely studied in pre-clinical in vitro and small animal models. However, there is still no consensus on whether creatine is essential for successful reproduction. This review consolidates the available literature on creatine metabolism in female reproduction, pregnancy and the early neonatal period. Creatine metabolism is discussed in relation to cellular bioenergetics and de novo synthesis, as well as the potential to use dietary creatine in a reproductive setting. We highlight the apparent knowledge gaps and the research “road forward” to understand, and then utilize, creatine to improve reproductive health and perinatal outcomes.
Collapse
|
10
|
Muthaffar OY. Treating epilepsy with options other than antiepileptic medications. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2020; 25:253-261. [PMID: 33130805 PMCID: PMC8015608 DOI: 10.17712/nsj.2020.4.20200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epilepsy is a common health burden worldwide. Epilepsy is linked to variety of factors, including infectious, vascular, immune, structural, genetic, and metabolic etiologies. Despite the existence of multiple antiepileptic drugs (AEDs), many patients are diagnosed with intractable epilepsy. Many nonpharmacological options are available for epilepsy. Some types of epilepsy respond to cofactors. Other patients may be candidates for a ketogenic diet. Inflammatory mediators, such as intravenous immunoglobulins (IVIgs) and steroids, are other options for epilepsy. Recently, cannabinoids have been approved for epilepsy treatment. Refractory epilepsy can be treated with surgical interventions. Focal resections, hemispherectomies, and corpus callosotomies are some common epilepsy surgery approaches. Neuromodulation techniques are another option. Thermal ablation is a minimally invasive approach for epilepsy treatment. Epilepsy outcomes are improving, and treatment modalities are expanding. Trials of nonpharmacological options for epilepsy patients are recommended. This article summarizes available nonpharmacological options other than AEDs for the treatment of epilepsy.
Collapse
Affiliation(s)
- Osama Y Muthaffar
- Department of Pediatrics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|
11
|
Farr CV, El-Kasaby A, Freissmuth M, Sucic S. The Creatine Transporter Unfolded: A Knotty Premise in the Cerebral Creatine Deficiency Syndrome. Front Synaptic Neurosci 2020; 12:588954. [PMID: 33192443 PMCID: PMC7644880 DOI: 10.3389/fnsyn.2020.588954] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022] Open
Abstract
Creatine provides cells with high-energy phosphates for the rapid reconstitution of hydrolyzed adenosine triphosphate. The eponymous creatine transporter (CRT1/SLC6A8) belongs to a family of solute carrier 6 (SLC6) proteins. The key role of CRT1 is to translocate creatine across tissue barriers and into target cells, such as neurons and myocytes. Individuals harboring mutations in the coding sequence of the human CRT1 gene develop creatine transporter deficiency (CTD), one of the pivotal underlying causes of cerebral creatine deficiency syndrome. CTD encompasses an array of clinical manifestations, including severe intellectual disability, epilepsy, autism, development delay, and motor dysfunction. CTD is characterized by the absence of cerebral creatine, which implies an indispensable role for CRT1 in supplying the brain cells with creatine. CTD-associated variants dramatically reduce or abolish creatine transport activity by CRT1. Many of these are point mutations that are known to trigger folding defects, leading to the retention of encoded CRT1 proteins in the endoplasmic reticulum and precluding their delivery to the cell surface. Misfolding of several related SLC6 transporters also gives rise to detrimental pathologic conditions in people; e.g., mutations in the dopamine transporter induce infantile parkinsonism/dystonia, while mutations in the GABA transporter 1 cause treatment-resistant epilepsy. In some cases, folding defects are amenable to rescue by small molecules, known as pharmacological and chemical chaperones, which restore the cell surface expression and transport activity of the previously non-functional proteins. Insights from the recent molecular, animal and human case studies of CTD add toward our understanding of this complex disorder and reveal the wide-ranging effects elicited upon CRT1 dysfunction. This grants novel therapeutic prospects for the treatment of patients afflicted with CTD, e.g., modifying the creatine molecule to facilitate CRT1-independent entry into brain cells, or correcting folding-deficient and loss-of-function CTD variants using pharmacochaperones and/or allosteric modulators. The latter justifies a search for additional compounds with a capacity to correct mutation-specific defects.
Collapse
Affiliation(s)
| | | | | | - Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|