1
|
Constantinou I, Bastounis EE. Cell-stretching devices: advances and challenges in biomedical research and live-cell imaging. Trends Biotechnol 2023; 41:939-950. [PMID: 36604290 DOI: 10.1016/j.tibtech.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023]
Abstract
Basic human functions such as breathing and digestion require mechanical stretching of cells and tissues. However, when it comes to laboratory experiments, the mechanical stretching that cells experience in the body is not often replicated, limiting the biomimetic nature of the studies and the relevance of results. Herein, we establish the importance of mechanical stretching during in vitro investigations by reviewing seminal works performed using cell-stretching platforms, highlighting important outcomes of these works as well as the engineering characteristics of the platforms used. Emphasis is placed on the compatibility of cell-stretching devices (CSDs) with live-cell imaging as well as their limitations and on the research advancements that could arise from live-cell imaging performed during cell stretching.
Collapse
Affiliation(s)
- Iordania Constantinou
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
| | - Effie E Bastounis
- Institute of Microbiology and Infection Medicine (IMIT), Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" EXC 2124, Eberhard Karls University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
2
|
In vitro cell stretching devices and their applications: From cardiomyogenic differentiation to tissue engineering. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
3
|
Nanocomposite Hydrogels as Functional Extracellular Matrices. Gels 2023; 9:gels9020153. [PMID: 36826323 PMCID: PMC9957407 DOI: 10.3390/gels9020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Over recent years, nano-engineered materials have become an important component of artificial extracellular matrices. On one hand, these materials enable static enhancement of the bulk properties of cell scaffolds, for instance, they can alter mechanical properties or electrical conductivity, in order to better mimic the in vivo cell environment. Yet, many nanomaterials also exhibit dynamic, remotely tunable optical, electrical, magnetic, or acoustic properties, and therefore, can be used to non-invasively deliver localized, dynamic stimuli to cells cultured in artificial ECMs in three dimensions. Vice versa, the same, functional nanomaterials, can also report changing environmental conditions-whether or not, as a result of a dynamically applied stimulus-and as such provide means for wireless, long-term monitoring of the cell status inside the culture. In this review article, we present an overview of the technological advances regarding the incorporation of functional nanomaterials in artificial extracellular matrices, highlighting both passive and dynamically tunable nano-engineered components.
Collapse
|
4
|
Xu M, Bermea KC, Ayati M, Kim HB, Yang X, Medina A, Fu Z, Heravi A, Zhang X, Na CH, Everett AD, Gabrielson K, Foster DB, Paolocci N, Murphy AM, Ramirez-Correa GA. Alteration in tyrosine phosphorylation of cardiac proteome and EGFR pathway contribute to hypertrophic cardiomyopathy. Commun Biol 2022; 5:1251. [PMID: 36380187 PMCID: PMC9666710 DOI: 10.1038/s42003-022-04021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations of serine/threonine phosphorylation of the cardiac proteome are a hallmark of heart failure. However, the contribution of tyrosine phosphorylation (pTyr) to the pathogenesis of cardiac hypertrophy remains unclear. We use global mapping to discover and quantify site-specific pTyr in two cardiac hypertrophic mouse models, i.e., cardiac overexpression of ErbB2 (TgErbB2) and α myosin heavy chain R403Q (R403Q-αMyHC Tg), compared to control hearts. From this, there are significant phosphoproteomic alterations in TgErbB2 mice in right ventricular cardiomyopathy, hypertrophic cardiomyopathy (HCM), and dilated cardiomyopathy (DCM) pathways. On the other hand, R403Q-αMyHC Tg mice indicated that the EGFR1 pathway is central for cardiac hypertrophy, along with angiopoietin, ErbB, growth hormone, and chemokine signaling pathways activation. Surprisingly, most myofilament proteins have downregulation of pTyr rather than upregulation. Kinase-substrate enrichment analysis (KSEA) shows a marked downregulation of MAPK pathway activity downstream of k-Ras in TgErbB2 mice and activation of EGFR, focal adhesion, PDGFR, and actin cytoskeleton pathways. In vivo ErbB2 inhibition by AG-825 decreases cardiomyocyte disarray. Serine/threonine and tyrosine phosphoproteome confirm the above-described pathways and the effectiveness of AG-825 Treatment. Thus, altered pTyr may play a regulatory role in cardiac hypertrophic models.
Collapse
Affiliation(s)
- Mingguo Xu
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,Department of Pediatrics, The Third People’s Hospital of Longgang District, Shenzhen, 518115 China
| | - Kevin C. Bermea
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Marzieh Ayati
- grid.449717.80000 0004 5374 269XDeparment of Computer Science/College of Engineering and Computer Science, University of Texas Rio Grande Valley School of Medicine, Edinburgh, Texas USA
| | - Han Byeol Kim
- grid.21107.350000 0001 2171 9311Department of Neurology/Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xiaomei Yang
- grid.27255.370000 0004 1761 1174Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Andres Medina
- Department of Molecular Science/UT Health Rio Grande Valley, McAllen, TX USA
| | - Zongming Fu
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Amir Heravi
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xinyu Zhang
- grid.27255.370000 0004 1761 1174Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Chan Hyun Na
- grid.21107.350000 0001 2171 9311Department of Neurology/Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Biological Chemistry/McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Allen D. Everett
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Kathleen Gabrielson
- grid.21107.350000 0001 2171 9311Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - D. Brian Foster
- grid.21107.350000 0001 2171 9311Department of Medicine/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nazareno Paolocci
- grid.21107.350000 0001 2171 9311Department of Medicine/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.5608.b0000 0004 1757 3470Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anne M. Murphy
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Genaro A. Ramirez-Correa
- grid.21107.350000 0001 2171 9311Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD USA ,Department of Molecular Science/UT Health Rio Grande Valley, McAllen, TX USA
| |
Collapse
|
5
|
Afjeh-Dana E, Naserzadeh P, Moradi E, Hosseini N, Seifalian AM, Ashtari B. Stem Cell Differentiation into Cardiomyocytes: Current Methods and Emerging Approaches. Stem Cell Rev Rep 2022; 18:2566-2592. [PMID: 35508757 DOI: 10.1007/s12015-021-10280-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are globally known to be important causes of mortality and disabilities. Common treatment strategies for CVDs, such as pharmacological therapeutics impose serious challenges due to the failure of treatments for myocardial necrosis. By contrast, stem cells (SCs) based therapies are seen to be promising approaches to CVDs treatment. In such approaches, cardiomyocytes are differentiated from SCs. To fulfill SCs complete potential, the method should be appointed to generate cardiomyocytes with more mature structure and well-functioning operations. For heart repairing applications, a greatly scalable and medical-grade cardiomyocyte generation must be used. Nonetheless, there are some challenges such as immune rejection, arrhythmogenesis, tumorigenesis, and graft cell death potential. Herein, we discuss the types of potential SCs, and commonly used methods including embryoid bodies related techniques, co-culture, mechanical stimulation, and electrical stimulation and their applications, advantages and limitations in this field. An estimated 17.9 million people died from CVDs in 2019, representing 32 % of all global deaths. Of these deaths, 85 % were due to heart attack and stroke.
Collapse
Affiliation(s)
- Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Naserzadeh
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moradi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| | - Alexander Marcus Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd), London BioScience Innovation Centre, London, UK
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran. .,Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran. .,Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
7
|
Öztürk Ş, Shahbazi R, Zeybek ND, Kurum B, Gultekinoglu M, Aksoy EA, Demircin M, Ulubayram K. Assessment of electromechanically stimulated bone marrow stem cells seeded acellular cardiac patch in a rat myocardial infarct model. Biomed Mater 2021; 16. [PMID: 34330118 DOI: 10.1088/1748-605x/ac199a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/30/2021] [Indexed: 12/17/2022]
Abstract
In this study, we evaluated cardiomyogenic differentiation of electromechanically stimulated rat bone marrow-derived stem cells (rt-BMSCs) on an acellular bovine pericardium (aBP) and we looked at the functioning of this engineered patch in a rat myocardial infarct (MI) model. aBP was prepared using a detergent-based decellularization procedure followed by rt-BMSCs seeding, and electrical, mechanical, or electromechanical stimulations (3 millisecond pulses of 5 V cm-1at 1 Hz, 5% stretching) to enhance cardiomyogenic differentiation. Furthermore, the electromechanically stimulated patch was applied to the MI region over 3 weeks. After this period, the retrieved patch and infarct region were evaluated for the presence of calcification, inflammatory reaction (CD68), patch to host tissue cell migration, and structural sarcomere protein expressions. In conjunction with any sign of calcification, a higher number of BrdU-labelled cells, and a low level of CD68 positive cells were observed in the infarct region under electromechanically stimulated conditions compared with static conditions. More importantly, MHC, SAC, Troponin T, and N-cad positive cells were observed in both infarct region, and retrieved engineered patch after 3 weeks. In a clear alignment with other results, our developed acellular patch promoted the expression of cardiomyogenic differentiation factors under electromechanical stimulation. Our engineered patch showed a successful integration with the host tissue followed by the cell migration to the infarct region.
Collapse
Affiliation(s)
- Şükrü Öztürk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Altındağ, Ankara 06100, Turkey.,Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Naciye Dilara Zeybek
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Barıs Kurum
- Department of Surgery, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Altındağ, Ankara 06100, Turkey
| | - Eda Ayse Aksoy
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Altındağ, Ankara 06100, Turkey
| | - Metin Demircin
- Departments of Thoracic Surgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Sıhhiye, Altındağ, Ankara 06100, Turkey.,Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey.,Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Pan D, Liu J. Mathematical modeling method of cell tension and compression based on multi-modal mechanical signals. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021. [DOI: 10.3233/jifs-189422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mechanical biology is the study of the influence of the mechanical environment on human health, disease, or injury. To study the mechanism of the organism’s perception and response to mechanical signals can promote the development of biomedical basic and clinical research, and promote human health. The purpose of this paper is to study the mathematical modeling method of the effect of multimodal mechanical signals on cell stretching and compression. This article first established a cell mechanics model based on the generalization of membrane theory, introduced the micro-manipulation techniques used to characterize cell mechanics and the method of cell mechanics loading, and then explained why mathematical modeling was established. Finally, according to the multi-modality During the mechanical preparation process, the effects of multi-modal mechanical signals on the stretching and compression of annulus fibrosus stem cells were studied. The experimental results in this paper show that after planting fibrous stem cells with different elastic modulus, the cell proliferation is obvious after the tensile mechanical stimulation of different conditions, and the different elastic modulus scaffolds are stimulated by the tensile mechanical stimulation of 2% tensile amplitude. The cell morphology is different. The low elastic modulus is round-like, and the high elastic modulus is fusiform-like. After 5% and 12% stretch amplitude, the cells are oriented at different elastic modulus. Arranged, there is no obvious difference in cell morphology.
Collapse
Affiliation(s)
- Dongyang Pan
- Xinyang Vocational and Technical College, Xinyang, Henan, China
| | - Jingrui Liu
- Xinyang Vocational and Technical College, Xinyang, Henan, China
| |
Collapse
|
9
|
Chen X, Du W, Cai Z, Ji S, Dwivedi M, Chen J, Zhao G, Chu J. Uniaxial Stretching of Cell-Laden Microfibers for Promoting C2C12 Myoblasts Alignment and Myofibers Formation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2162-2170. [PMID: 31856565 DOI: 10.1021/acsami.9b22103] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Fiber-shaped cellular constructs have attracted increasing attention in the regeneration of blood vessels, nerve networks, and skeletal myofibers. Nevertheless, the generation of functional fiber-shaped cellular constructs suffers from limited appropriate microfiber-based fabrication approaches and the maintenance of regenerated tissue functions. Herein, we demonstrate a silicone-tube-based coagulant bath free method to fabricate tens of centimeters long cell-laden microfibers using single UV exposure without pretreatment of nozzles or microchannels. By modulating the exposure time, the gelatin methacrylate microfibers with tissue-like microstructures and mechanical properties are obtained. Then, a culture system integrated with a pillar well-array based stretching device is used to apply uniaxial stretching with various strain ratios in situ to cell-laden microfibers in a 60 mm petri dish. Cells with improved spreading, elongation, and alignment are obtained under uniaxial stretching. Moreover, the promotional effects of uniaxial stretching on the differentiation of C2C12 myoblasts, the formation, and contractility of myofibers become more pronounced with increasing strain ratio and achieve saturation level as strain ratio up to ∼35%.
Collapse
Affiliation(s)
| | - Wenqiang Du
- Nationwide Children's Hospital , Columbus , Ohio 43205 , United States
- The Ohio State University College of Medicine , Columbus , Ohio 43205 , United States
| | | | | | | | - Jianfeng Chen
- Department of Mechanics Engineering , Nanchang University , Nanchang , Jiangxi 330031 , China
| | | | | |
Collapse
|
10
|
Shradhanjali A, Riehl BD, Duan B, Yang R, Lim JY. Spatiotemporal Characterizations of Spontaneously Beating Cardiomyocytes with Adaptive Reference Digital Image Correlation. Sci Rep 2019; 9:18382. [PMID: 31804542 PMCID: PMC6895104 DOI: 10.1038/s41598-019-54768-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
We developed an Adaptive Reference-Digital Image Correlation (AR-DIC) method that enables unbiased and accurate mechanics measurements of moving biological tissue samples. We applied the AR-DIC analysis to a spontaneously beating cardiomyocyte (CM) tissue, and could provide correct quantifications of tissue displacement and strain for the beating CMs utilizing physiologically-relevant, sarcomere displacement length-based contraction criteria. The data were further synthesized into novel spatiotemporal parameters of CM contraction to account for the CM beating homogeneity, synchronicity, and propagation as holistic measures of functional myocardial tissue development. Our AR-DIC analyses may thus provide advanced non-invasive characterization tools for assessing the development of spontaneously contracting CMs, suggesting an applicability in myocardial regenerative medicine.
Collapse
Grants
- P20 GM104320 NIGMS NIH HHS
- P20 GM113126 NIGMS NIH HHS
- P30 GM127200 NIGMS NIH HHS
- U54 GM115458 NIGMS NIH HHS
- American Heart Association (American Heart Association, Inc.)
- National Science Foundation (NSF)
- NIH/NIGMS Nebraska Center for Integrated Biomolecular Communication (NCIBC) (P20GM113126, PI: Takacs), NIH/NIGMS Nebraska Center for Nanomedicine (P30GM127200, PI: Bronich), Nebraska Collaborative Initiative (PI: Yang)
- NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
- NE DHHS Stem Cell Research Project (2018-07, PI: Lim); UNL Layman New Directions Award (PI: Lim); NIH/NIGMS COBRE NPOD Seed Grant (P20GM104320, PI: Zempleni); NIH/NIGMS Great Plains IDeA-CTR Pilot Grant (1U54GM115458-01, PI: Rizzo)
Collapse
Affiliation(s)
- Akankshya Shradhanjali
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Bin Duan
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ruiguo Yang
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
11
|
Puliafito A, Ricciardi S, Pirani F, Čermochová V, Boarino L, De Leo N, Primo L, Descrovi E. Driving Cells with Light-Controlled Topographies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801826. [PMID: 31380197 PMCID: PMC6661947 DOI: 10.1002/advs.201801826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/30/2019] [Indexed: 06/10/2023]
Abstract
Cell-substrate interactions can modulate cellular behaviors in a variety of biological contexts, including development and disease. Light-responsive materials have been recently proposed to engineer active substrates with programmable topographies directing cell adhesion, migration, and differentiation. However, current approaches are affected by either fabrication complexity, limitations in the extent of mechanical stimuli, lack of full spatio-temporal control, or ease of use. Here, a platform exploiting light to plastically deform micropatterned polymeric substrates is presented. Topographic changes with remarkable relief depths in the micron range are induced in parallel, by illuminating the sample at once, without using raster scanners. In few tens of seconds, complex topographies are instructed on demand, with arbitrary spatial distributions over a wide range of spatial and temporal scales. Proof-of-concept data on breast cancer cells and normal kidney epithelial cells are presented. Both cell types adhere and proliferate on substrates without appreciable cell damage upon light-induced substrate deformations. User-provided mechanical stimulation aligns and guides cancer cells along the local deformation direction and constrains epithelial colony growth by biasing cell division orientation. This approach is easy to implement on general-purpose optical microscopy systems and suitable for use in cell biology in a wide variety of applications.
Collapse
Affiliation(s)
- Alberto Puliafito
- Candiolo Cancer Institute FPO‐IRCCSCandioloTurin10060Italy
- Department of OncologyUniversity of TurinTurin10060Italy
| | - Serena Ricciardi
- Department of Applied Science and TechnologyPolytechnic University of TurinC.so Duca degli Abruzzi 24Turin10129Italy
| | - Federica Pirani
- Department of Applied Science and TechnologyPolytechnic University of TurinC.so Duca degli Abruzzi 24Turin10129Italy
| | - Viktorie Čermochová
- Department of Applied Science and TechnologyPolytechnic University of TurinC.so Duca degli Abruzzi 24Turin10129Italy
- Department of Chemical EngineeringUniversity of Chemical Technology PragueTechnická3166 28 Praha 6Czech Republic
| | - Luca Boarino
- Quantum Research Labs & Nanofacility Piemonte Nanoscience & Materials DivisionIstituto Nazionale di Ricerca MetrologicaStrada delle Cacce 91Turin10135Italy
| | - Natascia De Leo
- Quantum Research Labs & Nanofacility Piemonte Nanoscience & Materials DivisionIstituto Nazionale di Ricerca MetrologicaStrada delle Cacce 91Turin10135Italy
| | - Luca Primo
- Candiolo Cancer Institute FPO‐IRCCSCandioloTurin10060Italy
- Department of OncologyUniversity of TurinTurin10060Italy
| | - Emiliano Descrovi
- Department of Applied Science and TechnologyPolytechnic University of TurinC.so Duca degli Abruzzi 24Turin10129Italy
| |
Collapse
|
12
|
Yoon JK, Lee TI, Bhang SH, Shin JY, Myoung JM, Kim BS. Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22101-22111. [PMID: 28560866 DOI: 10.1021/acsami.7b03050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ex vivo induction of cardiomyogenic differentiation of mesenchymal stem cells (MSCs) before implantation would potentiate therapeutic efficacy of stem cell therapies for ischemic heart diseases because MSCs rarely undergo cardiomyogenic differentiation following implantation. In cardiac microenvironments, electric pulse and cyclic mechanical strain are sequentially produced. However, no study has applied the pulsatile mechanoelectric cues (PMEC) to stimulate cardiomyogenic differentiation of MSCs ex vivo. In this study, we developed a stretchable piezoelectric substrate (SPS) that can provide PMEC to human MSCs (hMSCs) for cardiomyogenic differentiation ex vivo. Our data showed that hMSCs subjected to PMEC by SPS underwent promoted cardiac phenotype development: cell alignment and the expression of cardiac markers (i.e., cardiac transcription factors, structural proteins, ion channel proteins, and gap junction proteins). The enhanced cardiac phenotype development was mediated by the upregulation of cardiomyogenic differentiation-related autocrine factor expression, focal adhesion kinase, and extracellular signal-regulated kinases signaling pathways. Thus, SPS providing electrical and mechanical regulation of stem cells may be utilized to potentiate hMSC therapies for myocardial infarction and provide a tool for the study of stem cell biology.
Collapse
Affiliation(s)
| | - Tae Il Lee
- Department of BioNano Technology, Gachon University , Seongnam 13557, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University , Suwon 16419, Republic of Korea
| | | | - Jae-Min Myoung
- Department of Materials Science and Engineering, Yonsei University , Seoul 03722, Republic of Korea
| | | |
Collapse
|
13
|
Enhanced cardiomyogenic induction of mouse pluripotent cells by cyclic mechanical stretch. Biochem Biophys Res Commun 2017; 488:590-595. [PMID: 28527889 DOI: 10.1016/j.bbrc.2017.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
Abstract
The cardiac milieu is mechanically active with spontaneous contraction beginning from early development and persistent through maturation and homeostasis, suggesting that mechanical loading may provide a biomimetic myocardial developmental signal. In this study, we tested the role of cyclic mechanical stretch loading in the cardiomyogenesis of pluripotent murine embryonic (P19) stem cells. A Flexcell tension system was utilized to apply equiaxial stretch (12% strain, 1.25 Hz frequency) to P19 cell-derived embryoid bodies (EBs). Interestingly, while control EBs without any further stimulation did not exhibit cardiomyogenesis, stretch stimulation alone could induce P19-derived EBs to become spontaneously beating cardiomyocytes (CMs). The beating colony number, average contracting area, and beating rate, as quantified by video capturing and framed image analysis, were even increased for stretch alone case relative to those from known biochemical induction with 5-Azacytidine (5-Aza). Key CM differentiation markers, GATA4 and Troponin T, could also be detected for the stretch alone sample at comparable levels as with 5-Aza treatment. Stretch and 5-Aza co-stimulation produced in general synergistic effects in CM developments. Combined data suggest that stretch loading may serve as a potent trigger to induce functional CM development in both beating dynamics and genomic development, which is still a challenge for myocardial regenerative medicine.
Collapse
|
14
|
Kim YY, Min H, Kim H, Choi YM, Liu HC, Ku SY. Differential MicroRNA Expression Profile of Human Embryonic Stem Cell-Derived Cardiac Lineage Cells. Tissue Eng Regen Med 2017; 14:163-169. [PMID: 30603473 PMCID: PMC6171578 DOI: 10.1007/s13770-017-0051-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 01/31/2017] [Accepted: 02/12/2017] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that participate in transcriptional and post-transcriptional regulation of gene expression. miRNAs have numerous roles in cellular function including embryonic development. Human embryonic stem cells (hESCs) are capable of self-renewal and can differentiate into most of cell types including cardiomyocytes (CMs). These characteristics of hESCs make them considered as an important model for studying human embryonic development and tissue specific differentiation. In this study, we tried to demonstrate the profile of miRNA expression in cardiac differentiation from hESCs. To induce differentiation, we differentiated hESCs into CMs by direct differentiation method and characterized differentiated cells. To analyze the expression of miRNAs, we distinguished (days 4, 8, 12, 16, 20, 24, 28) and isolated RNAs from each differentiation stage. miRNA specific RT-qPCR was performed and the expression profile of miR-1, -30d, -133a, -143, -145, -378a, -499a was evaluated. The expression of all miRs was up-regulated at day 8. miR-143 and -145 expression was also up-regulated at the later stage of differentiation. Only miR-378a expression returned to undifferentiated hESC levels at the other stages of differentiation. In conclusion, we elucidated the expression profile of miRNAs during differentiation into cardiomyocytes from hESCs. Our findings demonstrate the expression of miRNAs was stage-dependent during differentiation and suggest that the differentiation into CMs can be regulated by miRNAs through direct or indirect pathway.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Harry Min
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Young Min Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| | - Hung Ching Liu
- Center for Reproductive Medicine and Infertility, Cornell Weill Medical College, New York, NY 10021 USA
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
- Institute of Reproductive Medicine and Population, Medical Research Center, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Korea
| |
Collapse
|