1
|
Rostamani H, Fakhraei O, Kelidari N, Toosizadeh Khorasani F. Improving biological and mechanical properties of bioprinted PCL-alginate-chondrocyte scaffolds for patellofemoral cartilage tissue regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2549-2569. [PMID: 39078801 DOI: 10.1080/09205063.2024.2385182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/16/2024] [Indexed: 11/05/2024]
Abstract
In this study, polycaprolactone (PCL) scaffolds have been employed as structural framework scaffolds for patellofemoral cartilage tissue regeneration. The biomechanical and biological properties of different scaffolds were investigated by varying alginate concentrations and the number of scaffold layers. Patellofemoral cartilage defects result in knee pain and reduced mobility, and they are usually treated with conventional methods, often with limited success. Generally, tissue-engineered PCL-alginate scaffolds fabricated by bioprinting technology show promise for enhanced cartilage regeneration due to the biocompatibility and mechanical stability of PCL. In addition, alginate is known for its cell encapsulation capabilities and for promoting cell viability. Biological and morphological assessments, utilizing water contact angle, cell adhesion tests, MTT assays, and scanning electron microscopy (SEM), informed the selection of the optimized scaffold. Comparative analyses between the initial optimal scaffolds with the same chemical composition also included flexural and compression tests and fracture surface observations using SEM. The controlled integration of PCL and alginate offers a hybrid approach, that assembles the mechanical strength of PCL and the bioactive properties of alginate for tissue reconstruction potential. This study aims to identify the most effective scaffold composition for patellofemoral articular cartilage tissue engineering, emphasizing cell viability, structural morphology, and mechanical integrity. The results showed that the optimum biomechanical and biological properties of scaffolds were obtained with a 10% alginate concentration in the monolayer of PCL structure. The findings contribute to regenerative medicine by advancing the understanding of functional tissue constructs, bringing us closer to addressing articular cartilage defects and related clinical challenges.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Narges Kelidari
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
2
|
Perry AC, Adesida AB. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 39311456 DOI: 10.1089/ten.teb.2024.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Nasal cartilage serves a crucial structural function for the nose, where rebuilding the cartilaginous framework is an essential aspect of nasal reconstruction. Conventional methods of nasal reconstruction rely on autologous cartilage harvested from patients, which contributes to donor site pain and the potential for site-specific complications. Some patients are not ideal candidates for this procedure due to a lack of adequate substitute cartilage due to age-related calcification, differences in tissue quality, or due to prior surgeries. Tissue engineering, combined with three-dimensional printing technologies, has emerged as a promising method of generating biomimetic tissues to circumvent these issues to restore normal function and aesthetics. We conducted a comprehensive literature review to examine the applications of three-dimensional printing in conjunction with tissue engineering for the generation of nasal cartilage grafts. This review aims to compare various approaches and discuss critical considerations in the design of these grafts.
Collapse
Affiliation(s)
- Alexander C Perry
- Department of Surgery, Division of Plastic Surgery, University of Alberta, Edmonton, Canada
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, University of Alberta, Edmonton, Canada
- Department of Surgery, Division of Otolaryngology, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Shen J, Ye D, Jin H, Wu Y, Peng L, Liang Y. Porcine nasal septum cartilage-derived decellularized matrix promotes chondrogenic differentiation of human umbilical mesenchymal stem cells without exogenous growth factors. J Mater Chem B 2024; 12:5513-5524. [PMID: 38745541 DOI: 10.1039/d3tb03077f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
BACKGROUND In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS Compared to the TGF-β3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.
Collapse
Affiliation(s)
- Jinpeng Shen
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
- Department of Plastic Surgery, Taizhou Enze Medical Center, Zhejiang, P. R. China
| | - Danyan Ye
- Research Center for Translational Medicine, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Hao Jin
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Yongxuan Wu
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Lihong Peng
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital, Shantou University Medical College, Shantou, P. R. China.
| | - Yan Liang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Guizhou, P. R. China.
| |
Collapse
|
4
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
Li Q, Liang W, Wu H, Li J, Wang G, Zhen Y, An Y. Challenges in Application: Gelation Strategies of DAT-Based Hydrogel Scaffolds. TISSUE ENGINEERING. PART B, REVIEWS 2024. [PMID: 38666688 DOI: 10.1089/ten.teb.2023.0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Decellularized adipose tissue (DAT) has great clinical applicability, owing to its abundant source material, natural extracellular matrix microenvironment, and nonimmunogenic attributes, rendering it a versatile resource in the realm of tissue engineering. However, practical implementations are confronted with multifarious limitations. Among these, the selection of an appropriate gelation strategy serves as the foundation for adapting to diverse clinical contexts. The cross-linking strategies under varying physical or chemical conditions exert profound influences on the ultimate morphology and therapeutic efficacy of DAT. This review sums up the processes of DAT decellularization and subsequent gelation, with a specific emphasis on the diverse gelation strategies employed in recent experimental applications of DAT. The review expounds upon methodologies, underlying principles, and clinical implications of different gelation strategies, aiming to offer insights and inspiration for the application of DAT in tissue engineering and advance research for tissue engineering scaffold development.
Collapse
Affiliation(s)
- Qiaoyu Li
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Jingming Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Yang X, Liu P, Zhang Y, Lu J, Zhao H. Bioprinting-Enabled Biomaterials: A Cutting-Edge Strategy for Future Osteoarthritis Therapy. Int J Nanomedicine 2023; 18:6213-6232. [PMID: 37933298 PMCID: PMC10625743 DOI: 10.2147/ijn.s432468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Bioprinting is an advanced technology that allows for the precise placement of cells and biomaterials in a controlled manner, making significant contributions in regenerative medicine. Notably, bioprinting-enabled biomaterials have found extensive application as drug delivery systems (DDS) in the treatment of osteoarthritis (OA). Despite the widespread utilization of these biomaterials, there has been limited comprehensive research summarizing the recent advances in this area. Therefore, this review aims to explore the noteworthy developments and challenges associated with utilizing bioprinting-enabled biomaterials as effective DDS for the treatment of OA. To begin, we provide an overview of the complex pathophysiology of OA, highlighting the shortcomings of current treatment modalities. Following this, we conduct a detailed examination of various bioprinting technologies and discuss the wide range of biomaterials employed in DDS applications for OA therapy. Finally, by placing emphasis on their transformative potential, we discuss the incorporation of crucial cellular components such as chondrocytes and mesenchymal stem cells into bioprinted constructs, which play a pivotal role in promoting tissue regeneration and repair.
Collapse
Affiliation(s)
- Xinquan Yang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Peilong Liu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Yan Zhang
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Jun Lu
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| | - Hongmou Zhao
- Department of Foot and Ankle Surgery, Honghui Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710054, People’s Republic of China
| |
Collapse
|
7
|
Fenberg R, vonWindheim N, Malara M, Ahmed M, Cowen E, Melaragno L, Vankoevering K. Tissue Engineering: Current Technology for Facial Reconstruction. Facial Plast Surg 2023; 39:489-495. [PMID: 37290454 DOI: 10.1055/s-0043-1769808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Facial reconstruction is a complex surgical process that requires intricate three-dimensional (3D) concepts for optimal functional and aesthetic outcomes. Conventional reconstruction of structural facial anomalies, such as those including cartilage or bony defects, typically rely on hand-carving autologous constructs harvested from a separate donor site, and shaping that cartilage or bone into a new structural framework. Tissue engineering has emerged in recent decades as a potential approach to mitigate the need for donor site morbidity while improving precision in the design of reconstructive construct. Computer-aided design and computer-aided manufacturing have allowed for a digital 3D workflow to digitally execute the planned reconstruction in virtual space. 3D printing and other manufacturing techniques can then be utilized to create custom-fabricated scaffolds and guides to improve the reconstructive efficiency. Tissue engineering can be paired with custom 3D-manufactured scaffolds to theoretically create an ideal framework for structural reconstruction. In the past decade, there have been several compelling preclinical studies demonstrating the capacity to induce chondrogenesis or osteogenesis in a custom scaffold. However, to date, these preclinical data have not yet translated into significant clinical experience. This translation has been hindered by a lack of consensus on the ideal materials and cellular progenitors to be utilized in these constructs and a lack of regulatory guidance and control to enable clinical application. In this review, we highlight the current state of tissue engineering in facial reconstruction and exciting potential for future applications as the field continues to advance.
Collapse
Affiliation(s)
- Rachel Fenberg
- School of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Natalia vonWindheim
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Megan Malara
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Maariyah Ahmed
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Erin Cowen
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Luigi Melaragno
- Center for Design and Manufacturing Excellence, The Ohio State University College of Engineering, Columbus, Ohio
| | - Kyle Vankoevering
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
8
|
Kim JH, Min EJ, Ko Y, Kim DH, Park JB. Change in Maxillary Sinus Mucosal Thickness in Patients with Preoperative Maxillary Sinus Mucosal Thickening as Assessed by Otolaryngologists: A Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1750. [PMID: 37893468 PMCID: PMC10608619 DOI: 10.3390/medicina59101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Maxillary sinus pathologic conditions may increase the risk of complications during posterior maxillary sinus augmentation surgery. The purpose of this study was to evaluate the changes in participants with preoperative maxillary sinus mucosal thickening and to assess this factor as a preoperative risk indicator for sinusitis after maxillary dental implantation. Materials and Methods: We compared the preoperative and postoperative maxillary sinus mucosal thickness (MSMT), the distance between the maxillary sinus ostium and sinus floor (MOD), and the MSMT/MOD ratio. The participants were divided into three groups (sinus augmentation, bone grafting, and no grafting). Results: The mean preoperative MSMT was 4.3 ± 2.0 mm, and the mean MSMT/MOD ratio was 0.13 ± 0.05. No postoperative sinusitis was observed in these patients, including cases caused by anatomical variations. The mean postoperative MSMT was 4.5 ± 2.3 mm, and the mean postoperative MSMT/MOD ratio was 0.15 ± 0.06. There was no statistically significant difference between the groups at each time point (p > 0.05). Conclusions: The study found no significant change in MSMT at post-treatment evaluation, even when considering different subgroups. It underscores the importance of preoperative maxillary sinus radiographic assessments and collaboration between dentists and otolaryngologists for better outcomes in patients with preoperative maxillary sinus mucosal thickening.
Collapse
Affiliation(s)
- Jin-Hyeong Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (Y.K.)
| | - Eun Jeong Min
- Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
- Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngkyung Ko
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (Y.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Do Hyun Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (Y.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
9
|
McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D Bioprinting in Otolaryngology: A Review. Adv Healthc Mater 2023; 12:e2203268. [PMID: 36921327 PMCID: PMC10502192 DOI: 10.1002/adhm.202203268] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/05/2023] [Indexed: 03/17/2023]
Abstract
The evolution of tissue engineering and 3D bioprinting has allowed for increased opportunities to generate musculoskeletal tissue grafts that can enhance functional and aesthetic outcomes in otolaryngology-head and neck surgery. Despite literature reporting successes in the fabrication of cartilage and bone scaffolds for applications in the head and neck, the full potential of this technology has yet to be realized. Otolaryngology as a field has always been at the forefront of new advancements and technology and is well poised to spearhead clinical application of these engineered tissues. In this review, current 3D bioprinting methods are described and an overview of potential cell types, bioinks, and bioactive factors available for musculoskeletal engineering using this technology is presented. The otologic, nasal, tracheal, and craniofacial bone applications of 3D bioprinting with a focus on engineered graft implantation in animal models to highlight the status of functional outcomes in vivo; a necessary step to future clinical translation are reviewed. Continued multidisciplinary efforts between material chemistry, biological sciences, and otolaryngologists will play a key role in the translation of engineered, 3D bioprinted constructs for head and neck surgery.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Nadia McMillan
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Nikesh Gupta
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| | - Sohit P. Kanotra
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Aliasger K. Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA
| |
Collapse
|
10
|
Rajzer I, Kurowska A, Frankova J, Sklenářová R, Nikodem A, Dziadek M, Jabłoński A, Janusz J, Szczygieł P, Ziąbka M. 3D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglass. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1061. [PMID: 36770074 PMCID: PMC9919585 DOI: 10.3390/ma16031061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
In this work, composite filaments in the form of sticks and 3D-printed scaffolds were investigated as a future component of an osteochondral implant. The first part of the work focused on the development of a filament modified with bioglass (BG) and Zn-doped BG obtained by injection molding. The main outcome was the manufacture of bioactive, strong, and flexible filament sticks of the required length, diameter, and properties. Then, sticks were used for scaffold production. We investigated the effect of bioglass addition on the samples mechanical and biological properties. The samples were analyzed by scanning electron microscopy, optical microscopy, infrared spectroscopy, and microtomography. The effect of bioglass addition on changes in the SBF mineralization process and cell morphology was evaluated. The presence of a spatial microstructure within the scaffolds affects their mechanical properties by reducing them. The tensile strength of the scaffolds compared to filaments was lower by 58-61%. In vitro mineralization experiments showed that apatite formed on scaffolds modified with BG after 7 days of immersion in SBF. Scaffold with Zn-doped BG showed a retarded apatite formation. Innovative 3D-printing filaments containing bioglasses have been successfully applied to print bioactive scaffolds with the surface suitable for cell attachment and proliferation.
Collapse
Affiliation(s)
- Izabella Rajzer
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Anna Kurowska
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Jana Frankova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Renáta Sklenářová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 77515 Olomouc, Czech Republic
| | - Anna Nikodem
- Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland
| | - Michał Dziadek
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 31-007 Kraków, Poland
| | - Adam Jabłoński
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Jarosław Janusz
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Piotr Szczygieł
- Department of Mechanical Engineering Fundamentals, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-300 Bielsko-Biała, Poland
| | - Magdalena Ziąbka
- Department of Ceramics and Refractories, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
| |
Collapse
|
11
|
Hong YR, Kim TH, Park KH, Kang J, Lee K, Park EK, Kwon TG, Lim JO, Oh CW. rhBMP-2-Conjugated Three-Dimensional-Printed Poly(L-lactide) Scaffold is an Effective Bone Substitute. Tissue Eng Regen Med 2022; 20:69-81. [PMID: 36512177 PMCID: PMC9852414 DOI: 10.1007/s13770-022-00506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bone growth factors, particularly bone morphogenic protein-2 (BMP-2), are required for effective treatment of significant bone loss. Despite the extensive development of bone substitutes, much remains to be desired for wider application in clinical settings. The currently available bone substitutes cannot sustain prolonged BMP-2 release and are inconvenient to use. In this study, we developed a ready-to-use bone substitute by sequential conjugation of BMP to a three-dimensional (3D) poly(L-lactide) (PLLA) scaffold using novel molecular adhesive materials that reduced the operation time and sustained prolonged BMP release. METHODS A 3D PLLA scaffold was printed and BMP-2 was conjugated with alginate-catechol and collagen. PLLA scaffolds were conjugated with different concentrations of BMP-2 and evaluated for bone regeneration in vitro and in vivo using a mouse calvarial model. The BMP-2 release kinetics were analyzed using ELISA. Histological analysis and micro-CT image analysis were performed to evaluate new bone formation. RESULTS The 3D structure of the PLLA scaffold had a pore size of 400 µm and grid thickness of 187-230 µm. BMP-2 was released in an initial burst, followed by a sustained release for 14 days. Released BMP-2 maintained osteoinductivity in vitro and in vivo. Micro-computed tomography and histological findings demonstrate that the PLLA scaffold conjugated with 2 µg/ml of BMP-2 induced optimal bone regeneration. CONCLUSION The 3D-printed PLLA scaffold conjugated with BMP-2 enhanced bone regeneration, demonstrating its potential as a novel bone substitute.
Collapse
Affiliation(s)
- Yu Ri Hong
- Joint Institute for Regenerative Medicine, Kyungpook National University, Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea
| | - Tae-Ho Kim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea
| | - Kyeong-Hyeon Park
- School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Jumi Kang
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyueui Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Tae-Geon Kwon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyungpook National University, Daegu, 41940, Republic of Korea
| | - Jeong Ok Lim
- Joint Institute for Regenerative Medicine, Kyungpook National University, Bio-Medical Research Institute, Kyungpook National University Hospital, Daegu, 41940, Republic of Korea.
- School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Chang-Wug Oh
- Department of Orthopedic Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
12
|
Fan D, Liu Y, Wang Y, Wang Q, Guo H, Cai Y, Song R, Wang X, Wang W. 3D printing of bone and cartilage with polymer materials. Front Pharmacol 2022; 13:1044726. [PMID: 36561347 PMCID: PMC9763290 DOI: 10.3389/fphar.2022.1044726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Damage and degeneration to bone and articular cartilage are the leading causes of musculoskeletal disability. Commonly used clinical and surgical methods include autologous/allogeneic bone and cartilage transplantation, vascularized bone transplantation, autologous chondrocyte implantation, mosaicplasty, and joint replacement. 3D bio printing technology to construct implants by layer-by-layer printing of biological materials, living cells, and other biologically active substances in vitro, which is expected to replace the repair mentioned above methods. Researchers use cells and biomedical materials as discrete materials. 3D bio printing has largely solved the problem of insufficient organ donors with the ability to prepare different organs and tissue structures. This paper mainly discusses the application of polymer materials, bio printing cell selection, and its application in bone and cartilage repair.
Collapse
Affiliation(s)
- Daoyang Fan
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yifan Wang
- Department of Additive Manufacturing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Wang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Hao Guo
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yiming Cai
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Ruipeng Song
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China,University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Weidong Wang, ; Xing Wang,
| | - Weidong Wang
- Department of Orthopedic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China,*Correspondence: Weidong Wang, ; Xing Wang,
| |
Collapse
|
13
|
Chiesa-Estomba CM, Hernáez-Moya R, Rodiño C, Delgado A, Fernández-Blanco G, Aldazabal J, Paredes J, Izeta A, Aiastui A. Ex Vivo Maturation of 3D-Printed, Chondrocyte-Laden, Polycaprolactone-Based Scaffolds Prior to Transplantation Improves Engineered Cartilage Substitute Properties and Integration. Cartilage 2022; 13:105-118. [PMID: 36250422 PMCID: PMC9924975 DOI: 10.1177/19476035221127638] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head
and Neck Surgery, Osakidetza, Donostia University Hospital, San Sebastián,
Spain,Otorhinolaryngology and Head and Neck
Surgery Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Claudia Rodiño
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Alba Delgado
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Gonzalo Fernández-Blanco
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Javier Aldazabal
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Jacobo Paredes
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain,Tissue Engineering Group, Biodonostia
Health Research Institute, San Sebastián, Spain,Ander Izeta, Tissue Engineering Group,
Biodonostia Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San
Sebastián, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| |
Collapse
|
14
|
Winkler AA, Chabuz C, McIntosh CND, Lekakis G. The Need for Innovation in Rhinoplasty. Facial Plast Surg 2022; 38:440-446. [DOI: 10.1055/s-0042-1748954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AbstractRhinoplasty is a challenging surgery and results are not always perfect. There are many obstacles to achieving optimal results. Among these are inadequate instrumentation, the unpredictability of healing, imprecise planning, and many more. Furthermore, selecting patients who can most benefit from surgery is equally important. In this article, some of the more pressing areas of rhinoplasty that need innovation are discussed. From proper patient selection, to advances in education, to the standardization of training programs, to the development of sophisticated implants, the future of rhinoplasty surgery lies in continued creativity and innovation.
Collapse
Affiliation(s)
- Andrew A. Winkler
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Carolyn Chabuz
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Garyfalia Lekakis
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Winkler AA, Pham TT. Promising Implants in Rhinoplasty. Facial Plast Surg 2022; 38:455-460. [DOI: 10.1055/s-0042-1748766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AbstractMany dilemmas in rhinoplasty tempt surgeons to use exogenous materials. We have long looked toward implants to decrease operative time, to achieve a more reliable result, or when there is a paucity of autologous material. More than ever, the innovative and highly lucrative field of nasal implantology is developing technologically advanced products. This article looks at some popular nasal implant choices with a look toward what might be on the horizon.
Collapse
Affiliation(s)
- Andrew A. Winkler
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Tiffany T. Pham
- Department of Otolaryngology, Head and Neck Surgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
16
|
Liu H, Rui Y, Liu J, Gao F, Jin Y. Hyaluronic acid hydrogel encapsulated BMP-14-modified ADSCs accelerate cartilage defect repair in rabbits. J Orthop Surg Res 2021; 16:657. [PMID: 34732208 PMCID: PMC8565001 DOI: 10.1186/s13018-021-02792-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cartilage defect has a limited capacity to heal. In this context, we hypothesized that hyaluronic acid (HA) hydrogel encapsulated BMP-14-modified adipose-derived mesenchymal stem cells (ADSCs) could accelerate cartilage defect repair in rabbits. Methods ADSCs were isolated and identified by flow cytometry. ADSCs were treated with adenovirus vector encoding BMP-14 (Ad-BMP-14) or adenovirus vector encoding control (Ad-ctrl). Real-time PCR (RT-PCR) and western blot assay was performed to verify the transfection efficacy and chondrogenic differentiation markers (ACAN, Collagen II and SOX9). Rabbit cartilage defect model was performed and randomly divided into following groups: control group, HA hydrogel + ADSCs, ADSCs, HA hydrogel + BMP-14 transfected ADSCs, HA hydrogel + BMP-14 transfected ADSCs. At 6, 9 and 12 weeks after surgery, scanning electron microscopy, hematoxylin–eosin, Safranin-O/Fast Green and immunohistochemical staining for Collagen II were performed to determine the role of HA hydrogel encapsulated BMP-14-modified ADSCs in cartilage repair in vivo. Results ADSCs were successfully isolated and positively expressed CD29, CD44 and CD90. Transfection efficacy of Ad-BMP-14 was verified by RT-PCR and western blot assay. Moreover, Ad-BMP-14 could significantly increased chondrogenic differentiation markers (ACAN, Collagen II and SOX9). The LV-BMP-14-ADSCs and HA hydrogel + LV-BMP-14-ADSCs groups revealed smoother surface cartilage repair that was level with the surrounding cartilage and almost complete border integration. Conclusions HA hydrogel encapsulated BMP-14-modified ADSCs accelerate cartilage defect repair in rabbits. We need to further validate the specific mechanism of action of HA hydrogel encapsulated LV-BMP-14-ADSCs involved in the repairing cartilage damage in vivo.
Collapse
Affiliation(s)
- Hao Liu
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China.
| | - Yongjun Rui
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Jun Liu
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Fandong Gao
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| | - Yesheng Jin
- Department of Traumatic Orthopedics, Wuxi Ninth People's Hospital Affiliated To Soochow University, No. 999, Liangxi Road, Wuxi, 214000, Jiangsu Province, People's Republic of China
| |
Collapse
|