1
|
Yang Y, Zhu X, Liu X, Chen K, Hu Y, Liu P, Xu Y, Xiao X, Liu X, Song N, Feng Q. Injectable and self-healing sulfated hyaluronic acid/gelatin hydrogel as dual drug delivery system for circumferential tracheal repair. Int J Biol Macromol 2024; 279:134978. [PMID: 39182860 DOI: 10.1016/j.ijbiomac.2024.134978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified β-cyclodextrin (β-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of β-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-β1 (TGF-β1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-β1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.
Collapse
Affiliation(s)
- YaYan Yang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuezhe Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kai Chen
- School of Resources and Chemical Engineering, Sanming University, Fuzhou, China
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Pei Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv 2024; 21:1615-1636. [PMID: 39323396 DOI: 10.1080/17425247.2024.2409913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA’S COVERED This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Li B, Jin Y, Zhang B, Lu T, Li J, Zhang J, Zhou Y, Wang Y, Zhang C, Zhao Y, Li H. Adipose tissue-derived extracellular vesicles aggravate temporomandibular joint osteoarthritis associated with obesity. Clin Transl Med 2024; 14:e70029. [PMID: 39350476 PMCID: PMC11442491 DOI: 10.1002/ctm2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Temporomandibular joint osteoarthritis (TMJ OA) is a major disease that affects maxillofacial health and is characterised by cartilage degeneration and subchondral bone remodelling. Obesity is associated with the exacerbation of pathological manifestations of TMJ OA. However, the underlying mechanism between adipose tissue and the TMJ axis remains limited. OBJECTIVES To evaluate the effects of obesity and the adipose tissue on the development of TMJ OA. METHODS The obesity-related metabolic changes in TMJ OA patients were detected by physical signs and plasma metabolites. The effects of adipose tissue-derived EVs (Ad-EVs) on TMJ OA was investigated through histological and cytological experiments as well as gene editing technology. Alterations of Ad-EVs in obese state were identified by microRNA-seq analysis and the mechanism by which EVs affect TMJ OA was explored in vitro and in vivo. RESULTS Obesity and the related metabolic changes were important influencing factors for TMJ OA. Ad-EVs from obese mice induced marked chondrocyte apoptosis, cartilage matrix degradation and subchondral bone remodelling, which exacerbated the development of TMJ OA. Depletion of Ad-EVs secretion by knocking out the geranylgeranyl diphosphate synthase (Ggpps) gene in adipose tissue significantly inhibited the obesity-induced aggravation of TMJ OA. MiR-3074-5p played an important role in this process . CONCLUSIONS Our work unveils an unknown link between obese adipose tissue and TMJ OA. Targeting the Ad-EVs and the miR-3074-5p may represent a promising therapeutic strategy for obesity-related TMJ OA. KEY POINTS High-fat-diet-induced obesity aggravate the progression of TMJ OA in mice. Obese adipose tissue participates in cartilage damage through the altered miRNA in extracellular vesicles. Inhibition of miR-3074-5p/SMAD4 pathway in chondrocyte alleviated the effect of HFD-EVs on TMJ OA.
Collapse
Affiliation(s)
- Baochao Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yuqin Jin
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Bingqing Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Tong Lu
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jialing Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Jingzi Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of ImmunologyMedical School, Nanjing UniversityNanjingChina
| | - Yiwen Zhou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yanyi Wang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Caixia Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Yue Zhao
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| | - Huang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing UniversityNanjingChina
| |
Collapse
|
4
|
Fei Y, Li X, Lv Z, Liu Z, Xie Y, Chen J, Li W, Liu X, Guo H, Liu H, Zhang Z, Wang X, Fan J, Hu C, Jin X, Jiang R, Xu N, Xia J, Li Y, Shi D. Promoting chondrogenesis by targeted delivery to the degenerating cartilage in early treatment of osteoarthritis. Bioact Mater 2024; 40:624-633. [PMID: 39247402 PMCID: PMC11377143 DOI: 10.1016/j.bioactmat.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/21/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Osteoarthritis (OA) is a highly incident total joint degenerative disease with cartilage degeneration as the primary pathogenesis. The cartilage matrix is mainly composed of collagen, a matrix protein with a hallmark triple-helix structure, which unfolds with collagen degradation on the cartilage surface. A collagen hybridizing peptide (CHP) is a synthetic peptide that binds the denatured collagen triple helix, conferring a potential disease-targeting possibility for early-stage OA. Here, we constructed an albumin nanoparticle (An) conjugated with CHP, loaded with a chondrogenesis-promoting small molecule drug, kartogenin (KGN). The CHP-KGN-An particle exhibited sustained release of KGN in vitro and prolonged in vivo retention selectively within the degenerated cartilage in the knee joints of model mice with early-stage OA. Compared to treatment with KGN alone, CHP-KGN-An robustly attenuated cartilage degradation, synovitis, osteophyte formation, and subchondral bone sclerosis in OA model mice and exhibited a more prominent effect on physical activity improvement and pain alleviation. Our study showcases that targeting the degenerated cartilage by collagen hybridization can remarkably promote the efficacy of small molecule drugs and may provide a novel delivery strategy for early-stage OA therapeutics.
Collapse
Affiliation(s)
- Yuxiang Fei
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiaojing Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China
| | - Zhongyang Lv
- Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, PR China
| | - Zizheng Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ya Xie
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jiaqi Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Weitong Li
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiyu Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Hu Guo
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Huan Liu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Zhaofeng Zhang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xunhao Wang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jingjing Fan
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Chunqing Hu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Xiaoyu Jin
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Ruiyang Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Nuo Xu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR China
| | - Yang Li
- Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, PR China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, PR China
- Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, PR China
| |
Collapse
|
5
|
Ye L, Cao Z, Tan X, Zhao C, Cao Y, Pan J. Kartogenin potentially protects temporomandibular joints from collagenase-induced osteoarthritis via core binding factor β and runt-related transcription factor 1 binding - A rat model study. J Dent Sci 2023; 18:1553-1560. [PMID: 37799879 PMCID: PMC10548007 DOI: 10.1016/j.jds.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/03/2023] [Indexed: 03/15/2023] Open
Abstract
Background/purpose Temporomandibular joint (TMJ) osteoarthritis (TMJOA) is a chronic disease with progressive destruction of articular cartilage. This study aimed to explore the therapeutic effects of kartogenin on TMJOA via promoting the binding of core binding factor β (CBFβ) and runt-related transcription factor 1 (RUNX1). Materials and methods Type II collagenase was injected into 35 8-week-old male Sprague Dawley rat TMJs to establish the TMJOA model. Kartogenin, or the CBFβ-RUNX1 complex inhibitor (Ro5-3335), was also delivered via intra-articular injection. Subchondral bone was analyzed by MicroCT. The hematoxylin-eosin, Safranin O, and toluidine blue O staining were used to observe histopathology. Immunohistochemical staining of proliferating cell nuclear antigen (PCNA), caspase-3 (CASP3), interleukin-1β (IL-1β), and collagen II (COL2) was performed. Results TMJOA was established in rats by intra-articular injection of type II collagenase. The condylar cartilage and subchondral bone were damaged, with decreased PCNA and COL2 and increased CASP3 and IL-1 (P < .001). Compared with the OA group, kartogenin alleviated the destruction of cartilage and subchondral bone, rescued the expression of PCNA and COL2, and decreased the expression of CASP3 and IL-1β (P < .01). Ro5-3335 did not aggravate the pathology of TMJOA but neutralized the therapeutic effects of kartogenin on TMJOA. Conclusion Kartogenin has a potential therapeutic effect on TMJOA via promoting the CBFβ-RUNX1 binding.
Collapse
Affiliation(s)
- Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Tan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Tian X, Zhang Y, Shen L, Pan G, Yang H, Jiang Z, Zhu X, He F. Kartogenin-enhanced dynamic hydrogel ameliorates intervertebral disc degeneration via restoration of local redox homeostasis. J Orthop Translat 2023; 42:15-30. [PMID: 37560412 PMCID: PMC10407629 DOI: 10.1016/j.jot.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Over-activation of oxidative stress due to impaired antioxidant functions in nucleus pulpous (NP) has been identified as a key factor contributing to intervertebral disc degeneration (IVDD). While Kartogenin (KGN) has previously demonstrated antioxidant properties on articular cartilage against osteoarthritis, its effects on NP degeneration have yet to be fully understood. OBJECTIVES This study aimed to investigate the protective effects of KGN on nucleus pulpous cells (NPCs) against an inflammatory environment induced by interleukin (IL)-1β, as well as to explore the therapeutic potential of KGN-enhanced dynamic hydrogel in preventing IVDD. METHODS NPCs were isolated from rat caudal IVDs and subjected to treatment with KGN at varying concentrations (ranging from 0.01 to 1 μM) in the presence of IL-1β. The expression of extracellular matrix (ECM) anabolism markers was quantitatively assessed at both the mRNA and protein levels. Additionally, intracellular reactive oxygen species and antioxidant enzyme expression were evaluated, along with the role of nuclear factor erythroid 2-related factor 2 (NRF2). Based on these findings, a dynamic self-healing hydrogel loaded with KGN was developed through interconnecting networks. Subsequently, KGN-enhanced dynamic hydrogel was administered into rat caudal IVDs that had undergone puncture injury, followed by radiographic analysis and immunohistochemical staining to evaluate the therapeutic efficacy. RESULTS In vitro treatments utilizing KGN were observed to maintain ECM synthesis and inhibit catabolic activities in IL-1β-stimulated NPCs. The mechanism behind this protective effect of KGN on NPCs was found to involve the asctivation of NRF2 and downstream antioxidant enzymes, including glutathione peroxidase 1 and heme oxygenase 1. This was further supported by the loss of both antioxidant and anabolic effects upon pharmacological inhibition of NRF2. Furthermore, a self-healing hydrogel was developed and loaded with KGN to achieve localized and sustained release of the compound. The injection of KGN-enhanced hydrogel effectively ameliorated the degradation of NP ECM and mitigated inflammation in a rat model of puncture-induced IVDD. CONCLUSIONS Our results indicate that KGN exhibits potential as a therapeutic agent for NP degeneration, and that KGN-enhanced dynamic hydrogel represents a novel approach for treating IVDD by restoring redox homeostasis in NP.The translational potential of this article: The dysregulation of oxidant and antioxidant balance has been shown to impede the repair and regeneration of NP, thereby hastening the progression of IVDD following injury. The present investigation has demonstrated that the sustained release of KGN promotes the synthesis of ECM in vitro and mitigates the progression of IVDD in vivo by restoring redox equilibrium, thereby presenting a novel therapeutic candidate based on the antioxidant properties of KGN for the treatment of IVDD.
Collapse
Affiliation(s)
- Xin Tian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Lei Shen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing City, 214200, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Zhenhuan Jiang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing City, 214200, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215000, China
| |
Collapse
|
7
|
Buragaite-Staponkiene B, Rovas A, Puriene A, Snipaitiene K, Punceviciene E, Rimkevicius A, Butrimiene I, Jarmalaite S. Gingival Tissue MiRNA Expression Profiling and an Analysis of Periodontitis-Specific Circulating MiRNAs. Int J Mol Sci 2023; 24:11983. [PMID: 37569358 PMCID: PMC10418511 DOI: 10.3390/ijms241511983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to identify the microRNAs (miRNAs) associated with periodontitis (PD) in gingival tissues, and to evaluate the levels of these selected miRNAs in the saliva and blood plasma among participants with and without rheumatoid arthritis (RA). A genome-wide miRNA expression analysis in 16 gingival tissue samples revealed 177 deregulated miRNAs. The validation of the miRNA profiling results in 80 gingival tissue samples revealed that the PD-affected tissues had a higher expression of miR-140-3p and -145-5p, while the levels of miR-125a-3p were significantly lower in inflamed tissues. After a thorough validation, four miRNAs, namely miR-140-3p, -145-5p, -146a-5p, and -195-5p, were selected for further analysis in a larger sample of salivary (N = 173) and blood plasma (N = 221) specimens. Increased salivary levels of miR-145-5p were associated with higher mean values of pocket probing depth and bleeding on probing index. The plasma-derived levels of miR-140-3p were higher among the participants with PD. In conclusion, the gingival levels of miR-140-3p, -145-5p, and -125a-3p were independently associated with PD presence and severity. The salivary and blood plasma levels of the target miRNAs were diversely related to PD. Similar miRNA associations with PD were observed among the participants with and without RA.
Collapse
Affiliation(s)
- Benita Buragaite-Staponkiene
- Institute of Biosciences, Life Sciences Centre, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania; (B.B.-S.); (K.S.); (S.J.)
| | - Adomas Rovas
- Institute of Odontology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.P.); (A.R.)
| | - Alina Puriene
- Institute of Odontology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.P.); (A.R.)
| | - Kristina Snipaitiene
- Institute of Biosciences, Life Sciences Centre, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania; (B.B.-S.); (K.S.); (S.J.)
- National Cancer Institute, Santariskiu St. 1, LT-08406 Vilnius, Lithuania
| | - Egle Punceviciene
- Clinic of Rheumatology, Orthopaedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21, LT-03101 Vilnius, Lithuania; (E.P.); (I.B.)
- Centre of Rheumatology, Vilnius University Hospital Santaros Clinics, Santariskiu St. 2, LT-08410 Vilnius, Lithuania
| | - Arunas Rimkevicius
- Institute of Odontology, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21, LT-03101 Vilnius, Lithuania; (A.P.); (A.R.)
- Vilnius University Hospital Zalgiris Clinic, Zalgirio St. 117, LT-08217 Vilnius, Lithuania
| | - Irena Butrimiene
- Clinic of Rheumatology, Orthopaedics Traumatology and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, M. K. Ciurlionio St. 21, LT-03101 Vilnius, Lithuania; (E.P.); (I.B.)
- Centre of Rheumatology, Vilnius University Hospital Santaros Clinics, Santariskiu St. 2, LT-08410 Vilnius, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Centre, Sauletekio Ave. 7, LT-10257 Vilnius, Lithuania; (B.B.-S.); (K.S.); (S.J.)
- National Cancer Institute, Santariskiu St. 1, LT-08406 Vilnius, Lithuania
| |
Collapse
|
8
|
Wu M, Liu F, Yan L, Huang R, Hu R, Zhu J, Li S, Long C. MiR-145-5p restrains chondrogenic differentiation of synovium-derived mesenchymal stem cells by suppressing TLR4. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:625-642. [PMID: 35403567 DOI: 10.1080/15257770.2022.2057535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Osteoarthritis (OA) is a progressive degeneration of articular cartilage with involvement of synovial membrane, and subchondral bone. Recently, cell-based therapies, including the application of stem cells such as mesenchymal stem cells (MSCs), have been introduced for restoration of the articular cartilage. Toll-like receptors (TLRs) were reported to participate in OA progression and MSC chondrogenesis. Here, the role and molecular mechanism of toll like receptor 4 (TLR4) in chondrogenic differentiation of synovium-derived MSCs (SMSCs) were investigated. Molecular markers (CD44, CD90, CD45 and CD14) on SMSC surfaces were identified by flow cytometry. Multi-potential differentiation capacities of SMSCs for chondrogenesis, adipogenesis and osteogenesis were examined by Alcian blue, oil red O and Alizarin red staining, respectively. TLR4 and miR-145-5p levels in SMSCs were assessed using RT-qPCR. The protein expression of TGFB3, Col II, SOX9 and Aggrecan in SMSCs was tested by western blotting. Cytokine secretions were analyzed with ELISA for IL-1β and IL-6. Intracellular NAD+ content and NAD+/NADH ratio were assessed. The interaction between miR-145-5p and TLR4 was confirmed by RNA pulldown and luciferase reporter assays. In this study, SMSCs were identified to have immunophenotypic characteristics of MSCs. TLR4 knockdown inhibited chondrogenic and osteogenic differentiation of SMSCs. Mechanistically, TLR4 was targeted by miR-145-5p in SMSCs. Moreover, TLR4 elevation offset the inhibitory impact of miR-145-5p upregulation on chondrogenic differentiation of SMSCs. Overall, miR-145-5p restrains chondrogenesis of SMSCs by suppressing TLR4.
Collapse
Affiliation(s)
- Mingzheng Wu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Feng Liu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Li Yan
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Ruokun Huang
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Rui Hu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Jin Zhu
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Shanqing Li
- Department of Orthopedics, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| | - Chao Long
- Department of Radiology, Wuhan Fourth Hospital (Wuhan Puai Hospital), Wuhan, Hubei, China
| |
Collapse
|