1
|
Huang Y, Zhang Q, Jing Q, Li X, Dong F. The Expression Level of Inflammation-Related Genes in Patients With Bone Nonunion and the Effect of BMP-2 Infected Mesenchymal Stem Cells Combined With nHA/PA66 on the Inflammation Level of Femoral Bone Nonunion Rats. Physiol Res 2024; 73:819-829. [PMID: 39560192 PMCID: PMC11629945 DOI: 10.33549/physiolres.935439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/27/2024] [Indexed: 12/13/2024] Open
Abstract
Bone nonunion delays fracture end repair and is associated with inflammation. Although bone nonunion can be effectively repaired in clinical practice, many cases of failure. Studies have confirmed that BMP-2 and nHA/PA66 repaired bone defects successfully. There are few studies on the effects of the combined application of BMP-2 and NHA/PA66 on bone nonunion osteogenesis and inflammation. We aimed to investigate the expression level of inflammation-related genes in patients with bone nonunion and the effect of BMP-2-infected mesenchymal stem cells combined with nHA/PA66 on the level of inflammation in femur nonunion rats. We searched for a gene expression profile related to bone nonunion inflammation (GSE93138) in the GEO public database. Bone marrow mesenchymal stem cells (MSCs) of SD rats were cultured and passed through. We infected the third generation of MSCs with lentivirus carrying BMP-2 and induced the infected MSCs to bone orientation. We detected the expression level of BMP-2 by RT-PCR and the cell viability and alkaline phosphatase (ALP) activity by CCK8 and then analyzed the cell adhesion ability. Finally, the levels of related inflammatory factors, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and Erythrocyte Sedimentation Rate (ESR), were detected in nonunion rats. Our findings: The patients with nonunion had up-regulated expression of 26 differentially inflammatory genes. These genes are mainly enriched in innate immune response, extracellular region, calcium ion binding, Pantothenate and CoA biosynthesis pathways. The expression level of BMP-2 in the Lenti-BMP-2 group was higher (vs. empty lentivirus vector group: t=5.699; vs. uninfected group t=3.996). The cell activity of the MSCs + BMP-2 + nHA/PA66 group increased gradually. After being combined with nHA/PA66, MSCs transfected with BMP-2 spread all over the surface of nHA/PA66 and grew into the material pores. MSCs + BMP-2 + nHA/PA66 cells showed positive ALP staining, and the OD value of ALP was the highest. The levels of CRP, IL-6, TNF-alpha, and ESR in the MSCs + BMP-2 + nHA/PA66 group were lower than those in the MSCs and MSCs + nHA/PA66 group but higher than those in MSCs + BMP-2 group. The above comparisons were all P<0.05. The findings demonstrated that the expression level of inflammation-related genes increased in the patients with bone nonunion. The infection of MSCs by BMP-2 could promote the directed differentiation of MSCs into osteoblasts in the bone marrow of rats, enhance the cell adhesion ability and ALP activity, and reduce inflammation in rats with bone nonunion.
Collapse
Affiliation(s)
- Y Huang
- Department of Orthopedic Surgery, Qing Hai University Affiliated Hospital, Xining, Qinghai, China; Department of Pain Physiotherapy, People's Hospital of Rizhao, Rizhao, Shandong,
| | | | | | | | | |
Collapse
|
2
|
Wang X, Huang Y, Liu D, Zeng T, Wang J, Al Hasan MJ, Liu W, Wang D. The Masquelet induced membrane technique with PRP-FG-nHA/PA66 scaffold can heal a rat large femoral bone defect. BMC Musculoskelet Disord 2024; 25:455. [PMID: 38851675 PMCID: PMC11162015 DOI: 10.1186/s12891-024-07567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Masquelet membrane induction technology is one of the treatment strategies for large bone defect (LBD). However, the angiogenesis ability of induced membrane decreases with time and autologous bone grafting is associated with donor site morbidity. This study investigates if the PRP-FG-nHA/PA66 scaffold can be used as a spacer instead of PMMA to improve the angiogenesis ability of induced membrane and reduce the amount of autologous bone graft. METHODS Platelet rich plasma (PRP) was prepared and PRP-FG-nHA/PA66 scaffold was synthesized and observed. The sustained release of VEGFA and porosity of the scaffold were analyzed. We established a femur LBD model in male SD rats. 55 rats were randomly divided into four groups depending on the spacer filled in the defect area. "Defect only" group (n = 10), "PMMA" group (n = 15), "PRP-nHA/PA66" group (n = 15) and "PRP-FG-nHA/PA66" group (n = 15 ). At 6 weeks, the spacers were removed and the defects were grafted. The induced membrane and bone were collected and stained. The bone formation was detected by micro-CT and the callus union was scored on a three point system. RESULTS The PRP-FG-nHA/PA66 scaffold was porosity and could maintain a high concentration of VEGFA after 30 days of preparation. The induced membrane in PRP-FG-nHA/PA66 group was thinner than PMMA, but the vessel density was higher.The weight of autogenous bone grafted in PRP-FG-nHA/PA66 group was significantly smaller than that of PMMA group. In PRP-FG-nHA/PA66 group, the bone defect was morphologically repaired. CONCLUSION The study showed that PRP-FG-nHA/PA66 scaffold can significantly reduce the amount of autologous bone graft, and can achieve similar bone defect repair effect as PMMA. Our findings provide some reference and theoretical support for the treatment of large segmental bone defects in humans.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Yong Huang
- Department of Orthopedic Surgery, the Affiliated Hospital of Qinghai University, Xining, Qinghai, China
| | - Daqian Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Teng Zeng
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Jingzhe Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Md Junaed Al Hasan
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Wei Liu
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China
| | - Dawei Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang Province, China.
| |
Collapse
|
3
|
Song Y, Li H, Wang Z, Shi J, Li J, Wang L, Liao L, Ma S, Zhang Y, Liu B, Yang Y, Zhou P. Define of Optimal Addition Period of Osteogenic Peptide to Accelerate the Osteogenic Differentiation of Human Pluripotent Stem Cells. Tissue Eng Regen Med 2024; 21:291-308. [PMID: 37903982 PMCID: PMC10825087 DOI: 10.1007/s13770-023-00597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/15/2023] [Accepted: 09/05/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The addition of growth factiors is commonly applied to improve the osteogenic differentiation of stem cells. However, for human pluripotent stem cells (hPSCs), their complex differentiation processes result in the unknown effect at different stages. In this study, we focused on the widely used bone forming peptide-1 (BFP-1) and investigated the effect and mechanisms of its addition on the osteogenic induction of hPSCs as a function of the supplementation period. METHODS Monolayer-cultured hPSCs were cultured in osteogenic induction medium for 28 days, and the effect of BFP-1 peptide addition at varying weeks was examined. After differentiation for varying days (0, 7, 14, 21 and 28), the differentiation efficiency was determined by RT-PCR, flow cytometry, immunofluorescence, and alizarin red staining assays. Moreover, the expression of marker genes related to germ layers and epithelial-mesenchymal transition (EMT) was investigated at day 7. RESULTS Peptide treatment during the first week promoted the generation of mesoderm cells and mesenchymal-like cells from hiPSCs. Then, the upregulated expression of osteogenesis marker genes/proteins was detected in both hESCs and hiPSCs during subsequent inductions with BFP-1 peptide treatment. Fortunately, further experimental design confirmed that treating the BFP-1 peptide during 7-21 days showed even better performance for hESCs but was ineffective for hiPSCs. CONCLUSION The differentiation efficiency of cells could be improved by determining the optimal treatment period. Our study has great value in maximizing the differentiation of hPSCs by adding osteogenesis peptides based on the revealed mechanisms and promoting the application of hPSCs in bone tissue regeneration.
Collapse
Affiliation(s)
- Yameng Song
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongjiao Li
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zixuan Wang
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jiamin Shi
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jing Li
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lu Wang
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Lingzi Liao
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Shengqin Ma
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yun Zhang
- Lanzhou Hospital of Stomatology, Lanzhou, 730000, People's Republic of China
| | - Bin Liu
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Yaling Yang
- Lanzhou Hospital of Stomatology, Lanzhou, 730000, People's Republic of China.
| | - Ping Zhou
- School and Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Orthopedics, Lanzhou University Second Hospital, No.82 Cuiyingmen Street, Lanzhou, 730030, Gansu, People's Republic of China.
| |
Collapse
|
4
|
de Lima Barbosa R, Rodrigues Santiago Rocha N, Stellet Lourenço E, de Souza Lima VH, Mavropoulos E, Mello-Machado RC, Spiegel C, Mourão CF, Alves GG. The Association of Nanostructured Carbonated Hydroxyapatite with Denatured Albumin and Platelet-Rich Fibrin: Impacts on Growth Factors Release and Osteoblast Behavior. J Funct Biomater 2024; 15:18. [PMID: 38248685 PMCID: PMC10817063 DOI: 10.3390/jfb15010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Platelet-rich Fibrin (PRF), a second-generation blood concentrate, offers a versatile structure for bone regeneration due to its composition of fibrin, growth factors, and cytokines, with adaptations like denatured albumin-enriched with liquid PRF (Alb-PRF), showing potential for enhanced stability and growth factor dynamics. Researchers have also explored the combination of PRF with other biomaterials, aiming to create a three-dimensional framework for enhanced cell recruitment, proliferation, and differentiation in bone repair studies. This study aimed to evaluate a combination of Alb-PRF with nanostructured carbonated hydroxyapatite microspheres (Alb-ncHA-PRF), and how this association affects the release capacity of growth factors and immunomodulatory molecules, and its impact on the behavior of MG63 human osteoblast-like cells. Alb-PRF membranes were prepared and associated with nanocarboapatite (ncHA) microspheres during polymerization. MG63 cells were exposed to eluates of both membranes to assess cell viability, proliferation, mineralization, and alkaline phosphatase (ALP) activity. The ultrastructural analysis has shown that the spheres were shattered, and fragments were incorporated into both the fibrin mesh and the albumin gel of Alb-PRF. Alb-ncHA-PRF presented a reduced release of growth factors and cytokines when compared to Alb-PRF (p < 0.05). Alb-ncHA-PRF was able to stimulate osteoblast proliferation and ALP activity at lower levels than those observed by Alb-PRF and was unable to positively affect in vitro mineralization by MG63 cells. These findings indicate that the addition of ncHA spheres reduces the biological activity of Alb-PRF, impairing its initial effects on osteoblast behavior.
Collapse
Affiliation(s)
- Renata de Lima Barbosa
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| | | | - Emanuelle Stellet Lourenço
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| | - Victor Hugo de Souza Lima
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| | - Elena Mavropoulos
- Brazilian Center for Physics Research, Rio de Janeiro 22290-180, Brazil
| | | | - Carolina Spiegel
- Department of Cellular and Molecular Biology, Fluminense Federal University, Niteroi 24033-900, Brazil
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Graduate Program in Science and Biotechnology, Fluminense Federal University, Niteroi 24210-201, Brazil
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University, Niteroi 24033-900, Brazil
| |
Collapse
|
5
|
Zhu L, Li P, Qin Y, Xiao B, Li J, Xu W, Yu B. Platelet-rich plasma in orthopedics: Bridging innovation and clinical applications for bone repair. J Orthop Surg (Hong Kong) 2024; 32:10225536231224952. [PMID: 38217531 DOI: 10.1177/10225536231224952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2024] Open
Abstract
In the burgeoning domain of orthopedic therapeutic research, Platelet-Rich Plasma (PRP) has firmly established its position, transforming paradigms ranging from tissue regeneration to the management of chondral lesions. This review delves into PRP's recent integrations with cutting-edge interventions such as 3D-printed scaffolds, its role in bone and cartilage defect management, and its enhanced efficacy when combined with molecules like Kartogenin (KGN) for fibrocartilage zone repair. Significant attention is paid to tissue engineering for meniscal interventions, where a combination of KGN, PRP, and bone marrow-derived mesenchymal stem cells are under exploration. Within the sphere of osteochondral regenerative therapy, the synergy of PRP with Bone Marrow Aspirate Concentrate (BMAC) represents a noteworthy leap towards cartilage regeneration. The innovative incorporation of PRP with biomaterials like hydroxyapatite and graphene oxide further underscores its versatility in supporting structural integrity and ensuring sustained growth factor release. However, while PRP's autologous and nontoxic nature makes it an inherently safe option, concerns arising from its preparation methods, particularly with bovine thrombin, necessitate caution. As of 2023, despite the burgeoning promise of PRP in bone healing, the quest for its standardization, optimization, and substantiation through rigorous clinical trials continues. This comprehensive review elucidates the contemporary applications, challenges, and future trajectories of PRP in orthopedics, aiming to spotlight areas primed for further research and exploration.
Collapse
Affiliation(s)
- Liangbo Zhu
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Ping Li
- Department of Pulmonary and Critical Care Medicine, Yichun People'S Hospital, Yichun, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang, P.R. China
| | - Yuhong Qin
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Baowei Xiao
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Junning Li
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Wenhua Xu
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| | - Bo Yu
- Orthopaedic Hospital, Yichun People'S Hospital, Yichun, China
| |
Collapse
|
6
|
Kim JH, Lee HJ, Song HJ, Park JB. Impact of 17β-Estradiol on the Shape, Survival, Osteogenic Transformation, and mRNA Expression of Gingiva-Derived Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:60. [PMID: 38256321 PMCID: PMC10817649 DOI: 10.3390/medicina60010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/05/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024]
Abstract
Background and Objectives: Mesenchymal stem cells hold promise for tissue regeneration, given their robust growth and versatile differentiation capabilities. An analysis of bone marrow-sourced mesenchymal stem cell proliferation showed that 17β-estradiol could enhance their growth. This study aims to investigate the influence of 17β-estradiol on the shape, survival, osteogenic differentiation, and mineralization of human mesenchymal stem cells. Materials and Methods: Spheroids made from human gingiva-derived stem cells were cultivated with varying concentrations of 17β-estradiol: 0, 0.01, 0.1, 1, and 10 nM. Morphology was assessed on days 1, 3, and 5. The live/dead kit assay was employed on day 3 for qualitative cell viability, while cell counting kit-8 was used for quantitative viability assessments on days 1, 3, and 5. To evaluate the osteogenic differentiation of the spheroids, a real-time polymerase chain reaction assessed the expressions of RUNX2 and COL1A1 on day 7. Results: The stem cells formed cohesive spheroids, and the inclusion of 17β-estradiol did not noticeably alter their shape. The spheroid diameter remained consistent across concentrations of 0, 0.01, 0.1, 1, and 10 nM of 17β-estradiol. However, cellular viability was boosted with the addition of 1 and 10 nM of 17β-estradiol. The highest expression levels for RUNX2 and COL1A1 were observed with the introduction of 17β-estradiol at 0.1 nM. Conclusions: In conclusion, from the results obtained, it can be inferred that 17β-estradiol can be utilized for differentiating stem cell spheroids. Furthermore, the localized and controlled use, potentially through localized delivery systems or biomaterials, can be an area of active research. While 17β-estradiol holds promise for enhancing stem cell applications, any clinical use requires a thorough understanding of its mechanisms, careful control of its dosage and delivery, and extensive testing to ensure safety and efficacy.
Collapse
Affiliation(s)
- Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (J.-H.K.); (H.-J.L.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|