1
|
Son KH, Kim DH, Park S, Kim HJ, Park M, Kim SJ, Lee SJ, Ahn K, Lee JW. Spherical Shell Bioprinting to Produce Uniform Spheroids with Controlled Sizes. J Funct Biomater 2024; 15:350. [PMID: 39590553 PMCID: PMC11595458 DOI: 10.3390/jfb15110350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Conventional cell spheroid production methods are largely manual, leading to variations in size and shape that compromise consistency and reliability for use in cell-based therapeutic applications. To enhance spheroid production, a spherical shell bioprinting system was implemented, enabling the high-throughput generation of uniform cell spheroids with precisely controlled sizes. The system encapsulates cells within thin alginate hydrogel shells formed through bioprinting and ion crosslinking reactions. Alginate-calcium ion crosslinking created alginate shells that contained gelatin-based bioinks with embedded cells, facilitating spontaneous cell aggregation within the shells and eliminating the need for plastic wells. By adjusting cell concentrations in the alginate-gelatin bioink, we achieved precise control over spheroid size, maintaining a sphericity above 0.94 and size deviations within ±10 µm. This method has been successfully applied to various cell types including cancer cells, fibroblasts, chondrocytes, and epithelial cells, demonstrating its versatility. This scalable approach enhances the reliability of cell therapy and drug screening, offering a robust platform for future biomedical applications.
Collapse
Affiliation(s)
- Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gil Medical Center, College of Medicine, Gachon University, 21, Namdong-daero 774 Beon-gil, Namdong-gu, Incheon 21565, Republic of Korea;
| | - Dong-Ha Kim
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Seunghye Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea;
| | - Hyun Jae Kim
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Mira Park
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Seung-Jin Kim
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157, USA;
| | - Keunsun Ahn
- Research Institute, Sphebio Co., Ltd., 501-ho, 3, Achasan-ro 11ga-gil, Seongdong-gu, Seoul 04796, Republic of Korea; (D.-H.K.); (H.J.K.); (M.P.); (S.-J.K.)
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea;
- Department of Molecular Medicine, College of Medicine, Gachon University, 155, Gaetbeol-ro, Yeonsu-ku, Incheon 21999, Republic of Korea
| |
Collapse
|
2
|
Lee HY, Lee JW. Spheroid-Exosome-Based Bioprinting Technology in Regenerative Medicine. J Funct Biomater 2024; 15:345. [PMID: 39590549 PMCID: PMC11595066 DOI: 10.3390/jfb15110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Since the discovery that exosomes can exchange genes, their potential use as tools for tissue regeneration, disease diagnosis, and therapeutic applications has drawn significant attention. Emerging three-dimensional (3D) printing technologies, such as bioprinting, which allows the printing of cells, proteins, DNA, and other biological materials, have demonstrated the potential to create complex body tissues or personalized 3D models. The use of 3D spheroids in bioprinting facilitates volumetric tissue reconstruction and accelerates tissue regeneration via exosome secretion. In this review, we discussed a convergence approach between two promising technologies for bioprinting and exosomes in regenerative medicine. Among the various 3D cell culture methods used for exosome production, we focused on spheroids, which are suitable for mass production by bioprinting. We then summarized the research results on cases of bioprinting applications using the spheroids and exosomes produced. If a large number of spheroids can be supplied through bioprinting, the spheroid-exosome-based bioprinting technology will provide new possibilities for application in tissue regeneration, disease diagnosis, and treatment.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Ohtsuki T, Sato I, Takashita R, Kodama S, Ikemura K, Opoku G, Watanabe S, Furumatsu T, Yamada H, Ando M, Akiyoshi K, Nishida K, Hirohata S. Distribution and Incorporation of Extracellular Vesicles into Chondrocytes and Synoviocytes. Int J Mol Sci 2024; 25:11942. [PMID: 39596012 PMCID: PMC11593503 DOI: 10.3390/ijms252211942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic disease affecting over 500 million people worldwide. As the population ages and obesity rates rise, the societal burden of OA is increasing. Pro-inflammatory cytokines, particularly interleukin-1β, are implicated in the pathogenesis of OA. Recent studies suggest that crosstalk between cartilage and synovium contributes to OA development, but the mechanisms remain unclear. Extracellular vesicles (EVs) were purified from cell culture-conditioned medium via ultracentrifugation and confirmed using transmission electron microscopy, nanoparticle tracking analysis, and western blotting. We demonstrated that EVs were taken up by human synoviocytes and chondrocytes in vitro, while in vivo experiments revealed that fluorescent-labelled EVs injected into mouse joints were incorporated into chondrocytes and synoviocytes. EV uptake was significantly inhibited by dynamin-mediated endocytosis inhibitors, indicating that endocytosis plays a major role in this process. Additionally, co-culture experiments with HEK-293 cells expressing red fluorescent protein (RFP)-tagged CD9 and the chondrocytic cell line OUMS-27 confirmed the transfer of RFP-positive EVs across a 600-nm but not a 30-nm filter. These findings suggest that EVs from chondrocytes are released into joint fluid and taken up by cells within the cartilage, potentially facilitating communication between cartilage and synovium. The results underscore the importance of EVs in OA pathophysiology.
Collapse
Affiliation(s)
- Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Ren Takashita
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Shintaro Kodama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Kentaro Ikemura
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Gabriel Opoku
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| | - Takayuki Furumatsu
- Department of Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.F.); (K.N.)
| | - Hiroshi Yamada
- Department of Neuroscience, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Mitsuru Ando
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan;
| | - Keiichiro Nishida
- Department of Orthopedic Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.F.); (K.N.)
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (T.O.); (I.S.); (K.I.); (G.O.); (S.W.)
| |
Collapse
|
4
|
Wang M, Jin F, Tong X. From bench to bedside: The promising value of exosomes in precision medicine for CNS tumors. Heliyon 2024; 10:e32376. [PMID: 38961907 PMCID: PMC11219334 DOI: 10.1016/j.heliyon.2024.e32376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Exosomes are naturally present extracellular vesicles (EVs) released into the surrounding body fluids upon the fusion of polycystic and plasma membranes. They facilitate intercellular communication by transporting DNA, mRNA, microRNA, long non-coding RNA, circular RNA, proteins, lipids, and nucleic acids. They contribute to the onset and progression of Central Nervous System (CNS) tumors. In addition, they can be used as biomarkers of tumor proliferation, migration, and blood vessel formation, thereby affecting the Tumor Microenvironment (TME). This paper reviews the recent advancements in the diagnosis and treatment of exosomes in various CNS tumors, the promise and challenges of exosomes as natural carriers of CNS tumors, and the therapeutic prospects of exosomes in CNS tumors. Furthermore, we hope this research can contribute to the development of more targeted and effective treatments for central nervous system tumors.
Collapse
Affiliation(s)
- Mengjie Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Jin
- Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital).266042, Qingdao, Shandong, China
| | - Xiaoguang Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
5
|
Park WJ, Han SH, Lee HJ, Kim JH, Song HJ, Park JB. The Influence of Tacrolimus on Cellular Morphology, Cellular Viability, Osteogenic Differentiation, and mRNA Expression within Stem Cell Spheroids. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:702. [PMID: 38792884 PMCID: PMC11123479 DOI: 10.3390/medicina60050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Tacrolimus is a macrolide lactone compound derived from the bacterium Streptomyces tsukubensis, widely known as an immunosuppressant. In basic research, the effects of tacrolimus on osteogenic differentiation have been tested using mesenchymal stem cells. In this study, tacrolimus's effects on the cellular survival and osteogenic differentiation of stem cell spheroids were investigated. Materials and Methods: Concave microwells were used to form stem cell spheroids in the presence of tacrolimus at final concentrations of 0 μg/mL, 0.1 μg/mL, 1 μg/mL, 10 μg/mL, and 100 μg/mL. A microscope was used to test cellular vitality qualitatively, and an assay kit based on water-soluble tetrazolium salt was used to measure cellular viability quantitatively. Alkaline phosphatase activity and an anthraquinone dye test for measuring calcium deposits were used to assess osteogenic differentiation. To assess the expression of osteogenic differentiation, a quantitative polymerase chain reaction, Western blot, and RNA sequencing were performed. Results: Spheroids across all concentrations maintained a relatively uniform and spherical shape. Cell viability assay indicated that tacrolimus, up to a concentration of 100 μg/mL, did not significantly impair cell viability within spheroids cultured in osteogenic media. The increase in calcium deposition, particularly at lower concentrations of tacrolimus, points toward an enhancement in osteogenic differentiation. There was an increase in COL1A1 expression across all tacrolimus concentrations, as evidenced by the elevated mean and median values, which may indicate enhanced osteogenic activity. Conclusions: This study showed that tacrolimus does not significantly impact the viability of stem cell spheroids in osteogenic media, even at high concentrations. It also suggests that tacrolimus may enhance osteogenic differentiation, as indicated by increased calcium deposition and COL1A1 expression. These findings advance our understanding of tacrolimus's potential roles in tissue repair, regeneration, and stem cell-based therapeutic applications.
Collapse
Affiliation(s)
- Won-Jong Park
- Department of Oral and Maxillofacial Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Sung-Hoon Han
- Department of Orthodontics, Seoul Saint Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Hyun-Jin Lee
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.)
| | - Ju-Hwan Kim
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.)
| | - Hye-Jung Song
- Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jun-Beom Park
- Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (H.-J.L.); (J.-H.K.)
- Dental Implantology, Graduate School of Clinical Dental Science, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Medicine, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Rhim WK, Kim JY, Lee SY, Cha SG, Park JM, Park HJ, Park CG, Han DK. Recent advances in extracellular vesicle engineering and its applications to regenerative medicine. Biomater Res 2023; 27:130. [PMID: 38082304 PMCID: PMC10712135 DOI: 10.1186/s40824-023-00468-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 11/24/2023] [Indexed: 01/02/2025] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that are released from cells and reflect the characteristics of the mother cell. Recently, the EVs have been used in several types of studies across many different fields. In the field of EV research, multiple cell culture and EV isolation techniques have been highlighted in importance. Various strategies, including exclusive component culture media, three-dimensional (3D) cultures, and hypoxic conditions, have been proposed for the cell culture to control function of the EVs. Ultracentrifugation, ultrafiltration, precipitation, and tangential flow filtration (TFF) have been utilized for EV isolation. Although isolated EVs have their own functionalities, several researchers are trying to functionalize EVs by applying various engineering approaches. Gene editing, exogenous, endogenous, and hybridization methods are the four well-known types of EV functionalization strategies. EV engineered through these processes has been applied in the field of regenerative medicine, including kidney diseases, osteoarthritis, rheumatoid arthritis, nervous system-related diseases, and others. In this review, it was focused on engineering approaches for EV functionalization and their applications in regenerative medicine.
Collapse
Affiliation(s)
| | - Jun Yong Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Seung Yeon Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Seung-Gyu Cha
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jeong Min Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyeon Jeong Park
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
- Intelligent Precision of Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
7
|
Hu P, Ying J, Wang Y, Jiang T, Pan Z, Zhao C, Li J, Li C. Extracellular Vesicles Derived From 3D Cultured Antler Stem Cells Serve as a New Drug Vehicle in Osteosarcoma Treatment. Cell Transplant 2023; 32:9636897231219830. [PMID: 38102784 PMCID: PMC10725652 DOI: 10.1177/09636897231219830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 12/17/2023] Open
Abstract
Extracellular vesicles (EVs) from antler reserve mesenchymal (RM) cells play an important role in the paracrine regulation during rapid growth of antler without forming a tumor; therefore, RM-EVs become novel materials for anti-tumor studies, such as osteosarcoma treatment. However, the problem of low production of RM-EVs in traditional 2D culture limits its mechanism research and application. In this study, we established an optimal 3D culture system for antler RM cells to produce EVs (3D-RM-EVs). Morphology and property of harvested 3D-RM-EVs were normal compared with EVs from conventional 2D culture, and the miRNA profile in them was basically the same through transcriptome sequencing analysis. Based on the same number of RM cells, the volume of the culture medium collected by 3D cultural system concentrated nearly 30 times, making it more convenient for subsequent purification. In addition, EVs were harvested 30 times in 3D cultural system, greatly increasing the total amount of EVs (harvested a total of 2-3 times in 2D culture). Although 3D-RM-EVs had a limited inhibitory effect on the proliferation of K7M2 cells, the inhibition effect of 3D-RM-EVs loaded drugs (Ifosfamide + Etoposide) were more significant than that of positive drug group alone (P < 0.05). Furthermore, in vivo studies showed that 3D-RM-EVs loaded drugs (Ifosfamide + Etoposide) had the most significant tumor inhibition effect, with decreased tumor size, and could slow down body weight loss compared with Ifosfamide + Etoposide (IFO + ET) group. These results demonstrated that 3D-RM-EVs were efficiently prepared from antler RM cells and were effective as drug vehicles for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Pengfei Hu
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jinchi Ying
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Yusu Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Tiantian Jiang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Zheng Pan
- China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chen Zhao
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| | - Jiping Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, China
| |
Collapse
|