1
|
Lino R, Guimarães AR, Sousa E, Azevedo M, Santos L. Emerging Fungal Infections of the Central Nervous System in the Past Decade: A Literature Review. Infect Dis Rep 2024; 16:952-976. [PMID: 39452161 PMCID: PMC11507179 DOI: 10.3390/idr16050076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
INTRODUCTION Invasive fungal infections affecting the central nervous system (CNS) are a major health concern worldwide associated with high mortality rates. Their increased incidence is largely due to an increase in the vulnerable immunocompromised population, changing environmental factors, and development of more accurate diagnostic methods. The aim of this article is to identify fungal causes of CNS infections that are recently emerging or have the potential to become emerging pathogens in the near future, as well as their clinical characteristics, including: Candida auris, Trichosporon spp., Blastomyces spp., Sporothrix spp., Talaromyces marneffei, Lomentospora prolificans, and Scedosporium spp. METHODS A review of the literature in PubMed in the last ten years was conducted to identify central nervous system infections caused by each of these fungi. RESULTS The review identified 10 cases caused by C. auris, 5 cases by Trichosporon spp., 82 cases by Blastomyces spp., 36 cases by Sporothrix spp., 21 cases by T. marneffei, 22 cases by Lomentospora prolificans, and 42 cases by Scedosporium spp. DISCUSSION The exact burden of these diseases remains difficult to ascertain, but their apparent rise underscores the urgent need for improved diagnostic, treatment, and management strategies against CNS fungal pathogens to improve outcomes against these life-threatening infections.
Collapse
Affiliation(s)
- Rita Lino
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - André Rodrigues Guimarães
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Estela Sousa
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Mariana Azevedo
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
| | - Lurdes Santos
- Infectious Diseases Department, Hospital de São João—Unidade Local de Saúde São João, 4200-319 Porto, Portugal; (A.R.G.); (E.S.); (M.A.); (L.S.)
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- ESCMID Study Group for Infectious Diseases of the Brain (ESGIB), 4051 Basel, Switzerland
- ESCMID Study Group for Infections in Compromised Hosts (ESGICH), 4051 Basel, Switzerland
| |
Collapse
|
2
|
Neoh CF, Chen SCA, Lanternier F, Tio SY, Halliday CL, Kidd SE, Kong DCM, Meyer W, Hoenigl M, Slavin MA. Scedosporiosis and lomentosporiosis: modern perspectives on these difficult-to-treat rare mold infections. Clin Microbiol Rev 2024; 37:e0000423. [PMID: 38551323 PMCID: PMC11237582 DOI: 10.1128/cmr.00004-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYAlthough Scedosporium species and Lomentospora prolificans are uncommon causes of invasive fungal diseases (IFDs), these infections are associated with high mortality and are costly to treat with a limited armamentarium of antifungal drugs. In light of recent advances, including in the area of new antifungals, the present review provides a timely and updated overview of these IFDs, with a focus on the taxonomy, clinical epidemiology, pathogenesis and host immune response, disease manifestations, diagnosis, antifungal susceptibility, and treatment. An expansion of hosts at risk for these difficult-to-treat infections has emerged over the last two decades given the increased use of, and broader population treated with, immunomodulatory and targeted molecular agents as well as wider adoption of antifungal prophylaxis. Clinical presentations differ not only between genera but also across the different Scedosporium species. L. prolificans is intrinsically resistant to most currently available antifungal agents, and the prognosis of immunocompromised patients with lomentosporiosis is poor. Development of, and improved access to, diagnostic modalities for early detection of these rare mold infections is paramount for timely targeted antifungal therapy and surgery if indicated. New antifungal agents (e.g., olorofim, fosmanogepix) with novel mechanisms of action and less cross-resistance to existing classes, availability of formulations for oral administration, and fewer drug-drug interactions are now in late-stage clinical trials, and soon, could extend options to treat scedosporiosis/lomentosporiosis. Much work remains to increase our understanding of these infections, especially in the pediatric setting. Knowledge gaps for future research are highlighted in the review.
Collapse
Affiliation(s)
- Chin Fen Neoh
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Sharon C-A Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
- The University of Sydney, Sydney, Australia
- Department of Infectious Diseases, Westmead Hospital, Sydney, Australia
| | - Fanny Lanternier
- Service de Maladies Infectieuses et Tropicales, Hôpital universitaire Necker-Enfants malades, Paris, France
- National Reference Center for Invasive Mycoses and Antifungals, Translational Mycology research group, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Shio Yen Tio
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Catriona L Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, New South Wales Health Pathology, Westmead Hospital, Sydney, Australia
| | - Sarah E Kidd
- National Mycology Reference Centre, SA Pathology, Adelaide, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, Australia
| | - David C M Kong
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- The National Centre for Antimicrobial Stewardship, The Peter Doherty Institute for Infections and Immunity, Melbourne, Australia
- Centre for Medicine Use and Safety, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, Australia
- School of Medicine, Deakin University, Waurn Ponds, Geelong, Australia
| | - Wieland Meyer
- The University of Sydney, Sydney, Australia
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Monica A Slavin
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
3
|
Huang YT, Hung TC, Fan YC, Chen CY, Sun PL. The high diversity of Scedosporium and Lomentospora species and their prevalence in human-disturbed areas in Taiwan. Med Mycol 2023; 61:myad041. [PMID: 37061781 DOI: 10.1093/mmy/myad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 04/17/2023] Open
Abstract
Scedosporium and Lomentospora are important opportunistic pathogens causing localized or disseminated infection in humans. Understanding their environmental distribution is critical for public hygiene and clinical management. We carried out the first environmental survey in urbanized and natural regions in Taiwan. Overall, Scedosporium and Lomentospora species were recovered in 132 out of 273 soil samples (48.4%) across Taiwan. We morphologically and molecularly identified six Scedosporium and one Lomentospora species. All four major clinical relevant species were isolated with high frequency, i.e., Scedosporium apiospermum (42.4%), S. boydii (21.8%), Lomentosporaprolificans (14.5%), S. aurantiacum (8.5%); two clinically minor species, Pseudallescheria angusta (6.7%) and S. dehoogii (5.6%), and a saprobic species, S. haikouense (0.6%), had moderate to rare incidence. These fungal species had high incidence in urban (48.6%) and hospital (67.4%) soil samples, and had limited distribution in samples from natural regions (5%). Multivariate analysis of the fungal composition revealed strong evidence of the preferential distribution of these fungi in urban and hospital regions compared with natural sites. In addition, strong evidence suggested that the distribution and abundance of these fungal species were highly heterogeneous in the environment; samples in vicinity often yielded varied fungal communities. We concluded that these fungal species were prevalent in soil in Taiwan and their occurrences were associated with human activities. Although, hygiene sensitive sites such as hospitals were not harboring heavier fungal burdens than other urban facilities in our survey, still, aware should be taken for the high frequency of these clinical relevant species around hospital regions.
Collapse
Affiliation(s)
- Yin-Tse Huang
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical School, Kaohsiung, 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Tsu-Chun Hung
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical School, Kaohsiung, 80708, Taiwan
| | - Yun-Chen Fan
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
| | - Chi-Yu Chen
- Department of Plant Pathology, National Chun-Hsing University, Taichung, 402202, Taiwan
| | - Pei-Lun Sun
- Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| |
Collapse
|
4
|
Rapid Diagnosis of Central Nervous System Scedosporiosis by Specific Quantitative Polymerase Chain Reaction Applied to Formalin-Fixed, Paraffin-Embedded Tissue. J Fungi (Basel) 2021; 8:jof8010019. [PMID: 35049958 PMCID: PMC8779996 DOI: 10.3390/jof8010019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
Scedosporium (S.) apiospermum is a typical mold causing cerebral abscesses, often after near-drowning. Infections are associated with high morbidity and mortality due to diagnostic challenges including the need for prolonged incubation of cultures. In addition, histopathological differentiation from other filamentous fungi, including Aspergillus fumigatus, may not be possible, excluding early specific diagnosis and targeted therapy. Polymerase chain reaction (PCR) on tissue samples can rapidly identify fungi, leading to an earlier adequate treatment. Due to an extensive spectrum of causative fungi, broad-range PCRs with amplicon sequencing have been endorsed as the best DNA amplification strategy. We herein describe a case with brain abscesses due to S. apiospermum in a 66-year-old immunocompromised female patient. While broad-range PCR failed to identify a fungal pathogen from a cerebral biopsy demonstrating hyaline mold hyphae, specific quantitative PCR (qPCR) identified Scedosporium and ruled out Aspergillus, the most prevalent agent of central nervous system mold infection. A panel of specific qPCR assays, guided by the morphology of fungal elements in tissue or as a multiplex assay, may be a successful molecular approach to identify fungal agents of brain abscesses. This also applies in the presence of negative broad-range fungal PCR, therefore providing diagnostic and therapeutic potential for early specific management and improvement of patient clinical outcome.
Collapse
|
5
|
Seidel D, Meißner A, Lackner M, Piepenbrock E, Salmanton-García J, Stecher M, Mellinghoff S, Hamprecht A, Durán Graeff L, Köhler P, Cheng MP, Denis J, Chedotal I, Chander J, Pakstis DL, Los-Arcos I, Slavin M, Montagna MT, Caggiano G, Mares M, Trauth J, Aurbach U, Vehreschild MJGT, Vehreschild JJ, Duarte RF, Herbrecht R, Wisplinghoff H, Cornely OA. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope®. Crit Rev Microbiol 2019; 45:1-21. [DOI: 10.1080/1040841x.2018.1514366] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Danila Seidel
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Arne Meißner
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Department of Hospital Hygiene and Infection Control, University Hospital Cologne, Cologne, Germany
| | - Michaela Lackner
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Ellen Piepenbrock
- Department of Immunology and Hygiene, Institute for Medical Microbiology, University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Melanie Stecher
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Sibylle Mellinghoff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Axel Hamprecht
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Luisa Durán Graeff
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Philipp Köhler
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
| | - Matthew P. Cheng
- Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montreal, Canada
| | - Julie Denis
- Hôpitaux Universitaires, Department of Parasitology and Mycology, Plateau Technique de Microbiologie, FMTS, Université de Strasbourg, Strasbourg, France
| | - Isabelle Chedotal
- Oncology and Hematology Department, University Hospital of Strasbourg and INSERM U1113, Strasbourg, France
| | - Jagdish Chander
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| | | | - Ibai Los-Arcos
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Monica Slavin
- University of Melbourne, Melbourne, Australia, The National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Maria Teresa Montagna
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppina Caggiano
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Mihai Mares
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University, Iași, Romania
| | - Janina Trauth
- Medical Clinic II – Infectious Diseases, University Hospital Giessen/Marburg, Giessen, Germany
| | - Ute Aurbach
- Laboratory Dr. Wisplinghoff, Cologne, Germany
| | - Maria J. G. T. Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Center for Integrated Oncology CIO Köln/Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jörg Janne Vehreschild
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Center for Integrated Oncology CIO Köln/Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rafael F. Duarte
- Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Raoul Herbrecht
- Oncology and Hematology Department, University Hospital of Strasbourg and INSERM U1113, Strasbourg, France
| | - Hilmar Wisplinghoff
- Department of Immunology and Hygiene, Institute for Medical Microbiology, University of Cologne, Cologne, Germany
- Laboratory Dr. Wisplinghoff, Cologne, Germany
- Institute for Virology and Clinical Microbiology, Witten/Herdecke University, Witten, Germany
| | - Oliver A. Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Partner site Bonn - Cologne, German Centre for Infection Research (DZIF), Cologne, Germany
- Center for Integrated Oncology CIO Köln/Bonn, Medical Faculty, University of Cologne, Cologne, Germany
- Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
6
|
Pharmacodynamics of Voriconazole for Invasive Pulmonary Scedosporiosis. Antimicrob Agents Chemother 2018; 62:AAC.02516-17. [PMID: 29439967 DOI: 10.1128/aac.02516-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/05/2018] [Indexed: 01/07/2023] Open
Abstract
Scedosporium apiospermum is a medically important fungal pathogen that causes a wide range of infections in humans. There are relatively few antifungal agents that are active against Scedosporium spp. Little is known about the pharmacodynamics of voriconazole against Scedosporium Both static and dynamic in vitro models of invasive scedosporiosis were developed. Monoclonal antibodies that target a soluble cell wall antigen secreted by Scedosporium apiospermum were used to describe the pharmacodynamics of voriconazole. Mathematical pharmacokinetic-pharmacodynamic models were fitted to the data to estimate the drug exposure required to suppress the release of fungal antigen. The experimental results were bridged to humans using Monte Carlo simulation. All 3 strains of S. apiospermum tested invaded through the cellular bilayer of the in vitro models and liberated antigen. There was a concentration-dependent decline in the amount of antigen, with near maximal antifungal activity against all 3 strains being achieved with voriconazole at 10 mg/liter. Similarly, there was a drug exposure-dependent decline in the amount of circulating antigen in the dynamic model and complete suppression of antigen, with an area under the concentration-time curve (AUC) of approximately 80 mg · h/liter. A regression of the AUC/MIC versus the area under the antigen-time curve showed that a near maximal effect was obtained with an AUC/MIC of approximately 100. Monte Carlo simulation suggested that only isolates with an MIC of 0.5 mg/liter enabled pharmacodynamic targets to be achieved with a standard regimen of voriconazole. Isolates with higher MICs may need drug exposure targets higher than those currently recommended for other fungi.
Collapse
|
7
|
Peptidorhamnomannan negatively modulates the immune response in a scedosporiosis murine model. Med Mycol 2016; 54:846-55. [DOI: 10.1093/mmy/myw039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 04/18/2016] [Indexed: 11/14/2022] Open
|
8
|
Abstract
Fungi are pathogens that commonly infect immunocompromised patients and can affect any organs of the body, including the colon. However, the literature provides limited details on colonic infections caused by fungi. This article is an intensive review of information available on the fungi that can cause colon infections. It uses a comparative style so that its conclusions may be accessible for clinical application.
Collapse
Affiliation(s)
- Surat Praneenararat
- Division of Gastroenterology, Department of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
9
|
Husain N, Chen TC, Hou JK. An unusual cause of diarrhea in an immunocompromised patient. Scedosporium apiospermum colitis and brain abscess. Gastroenterology 2013; 145:519, 697-8. [PMID: 23896373 DOI: 10.1053/j.gastro.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/02/2022]
Affiliation(s)
- Nisreen Husain
- Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, TX, USA
| | | | | |
Collapse
|