1
|
Abdelraouf K, Gill CM, Gethers M, Tiseo G, Barnini S, Falcone M, Menichetti F, Nicolau DP. Deciphering the Efficacy of β-Lactams in the Face of Metallo-β-Lactamase-Derived Resistance in Enterobacterales: Supraphysiologic Zinc in the Broth Is the Culprit. Open Forum Infect Dis 2024; 11:ofae228. [PMID: 38813259 PMCID: PMC11134298 DOI: 10.1093/ofid/ofae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/31/2024] Open
Abstract
Background In vitro-in vivo discordance in β-lactams' activities against metallo-ß-lactamase (MBL)-producing Enterobacterales has been described. We aimed to assess whether this discordance is attributed to the supra-physiologic zinc concentration in in vitro testing media. Methods A clinical and microbiological observational study of patients with bloodstream infections due to New Delhi metallo-ß-lactamase-producing Klebsiella pneumoniae was performed. Outcomes of patients treated empirically with non-MBL-active β-lactam therapy (carbapenems and ceftazidime/avibactam) and MBL-active β-lactam therapy (ceftazidime/avibactam + aztreonam) were documented. The patients' isolates were used to induce septicemia in mice, and survival upon meropenem treatment was recorded. Meropenem minimum inhibitory concentrations (MICs) were determined in standard media and in the presence of physiological zinc concentrations. Results Twenty-nine patients receiving empiric non-MBL-active β-lactams (median duration, 4 days) were compared with 29 receiving MBL-active β-lactams. The 14-day mortality rates were 21% and 14%, respectively. In the murine septicemia model, meropenem treatment resulted in protection from mortality (P < .0001). Meropenem MICs in the physiologic zinc concentration broth were 1- to >16-fold lower vs MICs in zinc-unadjusted broth (≥64 mg/L). Conclusions Our data provide foundational support to establish pharmacokinetic/pharmacodynamic relationships using MICs derived in physiologic zinc concentration, which may better predict β-lactam therapy outcome.
Collapse
Affiliation(s)
- Kamilia Abdelraouf
- Center for Anti-Infective Research & Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Christian M Gill
- Center for Anti-Infective Research & Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Matthew Gethers
- Center for Anti-Infective Research & Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Giusy Tiseo
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Simona Barnini
- Microbiology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Marco Falcone
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - Francesco Menichetti
- Infectious Diseases Unit, Department of Clinical and Experimental Medicine, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa, Italy
| | - David P Nicolau
- Center for Anti-Infective Research & Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
2
|
Lu B, Wang B, Pan X, Liu C, Jin C, Shi Y, Zhou Y. First case of bloodstream infection caused by NDM-positive Escherichia hermannii. BMC Infect Dis 2023; 23:355. [PMID: 37231346 DOI: 10.1186/s12879-023-08336-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Escherichia hermannii (E. hermanni) is always accompanied by other bacterial infections in humans. In previous reports, most E. hermannii-related infections were caused by sensitive strains. Here, for the first time, we report the case of a patient with New Delhi metallo-β-lactamase (NDM)-positive E. hermannii bloodstream infection. CASE PRESENTATION The patient was a 70-year-old male admitted to our hospital due to a 4-day fever, with a history of malignant tumor, liver cirrhosis, and chronic obstructive pulmonary disease. After admission, his blood culture tested positive for E. hermannii. The drug resistance analysis showed positive for NDM resistance, with susceptibility to aztreonam, levofloxacin, and amikacin. The blood culture turned negative after 8 days of aztreonam treatment. The patient's symptoms improved, and he was discharged after 14 days of hospitalization. CONCLUSIONS This is the first report of a bloodstream infection caused by an NDM-positive E. hermannii strain. The anti-infection regimen used in this case provides a new reference regimen for clinical practice.
Collapse
Affiliation(s)
- Bin Lu
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang Province, China
| | - Bin Wang
- Department of Emergency, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang Province, China
| | - Xinling Pan
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Chenxin Liu
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang Province, China
| | - Chenyuan Jin
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang Province, China
| | - Yunzhen Shi
- Department of Infectious Diseases, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang Province, China.
| | - Yangxiao Zhou
- Department of Clinical Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, No. 60 Wuningxi Road, Dongyang, Zhejiang, China.
| |
Collapse
|
3
|
Simon M, Gerlach RG, Pfeifer Y, Pfennigwerth N, Gatermann SG, Schröder A, Hiergeist A, Hamprecht A, Rügamer T, Gessner A, Jantsch J. Increased zinc levels facilitate phenotypic detection of ceftazidime-avibactam resistance in metallo-β-lactamase-producing Gram-negative bacteria. Front Microbiol 2022; 13:977330. [PMID: 36483203 PMCID: PMC9723239 DOI: 10.3389/fmicb.2022.977330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Ceftazidime-avibactam is one of the last resort antimicrobial agents for the treatment of carbapenem-resistant, Gram-negative bacteria. Metallo-β-lactamase-producing bacteria are considered to be ceftazidime-avibactam resistant. Here, we evaluated a semi-automated antimicrobial susceptibility testing system regarding its capability to detect phenotypic ceftazidime-avibactam resistance in 176 carbapenem-resistant, metallo-β-lactamase-producing Enterobacterales and Pseudomonas aeruginosa isolates. Nine clinical isolates displayed ceftazidime-avibactam susceptibility in the semi-automated system and six of these isolates were susceptible by broth microdilution, too. In all nine isolates, metallo-β-lactamase-mediated hydrolytic activity was demonstrated with the EDTA-modified carbapenemase inactivation method. As zinc is known to be an important co-factor for metallo-β-lactamase activity, test media of the semi-automated antimicrobial susceptibility testing system and broth microdilution were supplemented with zinc. Thereby, the detection of phenotypic resistance was improved in the semi-automated system and in broth microdilution. Currently, ceftazidime-avibactam is not approved as treatment option for infections by metallo-β-lactamase-producing, Gram-negative bacteria. In infections caused by carbapenem-resistant Gram-negatives, we therefore recommend to rule out the presence of metallo-β-lactamases with additional methods before initiating ceftazidime-avibactam treatment.
Collapse
Affiliation(s)
- Michaela Simon
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany,Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany,*Correspondence: Michaela Simon,
| | - Roman G. Gerlach
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen- Nürnberg, Erlangen, Germany
| | - Yvonne Pfeifer
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Niels Pfennigwerth
- Department of Medical Microbiology, German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Ruhr-University Bochum, Bochum, Germany
| | - Sören G. Gatermann
- Department of Medical Microbiology, German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Ruhr-University Bochum, Bochum, Germany
| | - Agnes Schröder
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany,Department of Orthodontics, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Hiergeist
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany
| | - Axel Hamprecht
- Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany,Department of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany,Institute for Medical Microbiology and Virology, Oldenburg, Germany,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Tamara Rügamer
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, Regensburg, Germany,Institute for Medical Microbiology, Immunology, and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Kaewnirat K, Chuaychob S, Chukamnerd A, Pomwised R, Surachat K, Phoo MTP, Phaothong C, Sakunrang C, Jeenkeawpiam K, Hortiwakul T, Charernmak B, Chusri S. In vitro Synergistic Activities of Fosfomycin in Combination with Other Antimicrobial Agents Against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 on the IncN2 Plasmid and a Study of the Genomic Characteristics of These Pathogens. Infect Drug Resist 2022; 15:1777-1791. [PMID: 35437346 PMCID: PMC9013254 DOI: 10.2147/idr.s357965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose The spread of New Delhi metallo-β-lactamase (NDM) encoded by the blaNDM gene has been a global health crisis for many years. Most of blaNDM-harboring bacteria commonly carry various antimicrobial resistance (AMR) genes on their chromosomes or plasmids, leading to limited treatment options. Thus, we aimed to evaluate the synergistic effects of fosfomycin in combination with other antimicrobial agents against blaNDM-harboring carbapenem-resistant Escherichia coli (CREC) and to characterize the whole-genome and plasmid sequences of these pathogens. Methods Thirty-eight CREC isolates were collected from patients in the Medicine Ward, Songklanagarind Hospital, Thailand. The activity of fosfomycin in combination with other antimicrobial agents against CREC isolates harboring blaNDM on the plasmid was evaluated using the checkerboard method. In this method, the serial dilutions of two antibiotics were mixed with the cultured CREC, the mixtures were incubated, and FICI was calculated to interpret the synergistic activity of the combination. The whole-genome and particular plasmids of these pathogens were sequenced using next-generation sequencing. Sequence analysis, especially on antimicrobial resistance (AMR) genes, mobile-genetic elements (MGEs), and virulence genes was performed using many bioinformatics tools. Results Of the E. coli 38 isolates, only 3 isolates contained the blaNDM-1 gene, which is located on the IncN2 plasmid. The combinations of fosfomycin with aminoglycosides, colistin, tigecycline, sitafloxacin, and ciprofloxacin were synergies against blaNDM-1-harboring CREC isolates. Genomic analysis revealed that these isolates harbored many β-lactam resistance genes and other AMR genes that may confer resistance to aminoglycoside, fluoroquinolone, rifampicin, trimethoprim, sulfonamide, tetracycline, and macrolide. Also, various MGEs, especially the blaNDM-1-bearing IncN2 plasmid, were present in these isolates. Conclusion Our study demonstrated some synergistic effects of antimicrobial combination against CREC isolates harboring blaNDM-1 on the IncN2 plasmid. Also, our data on the whole-genome and plasmid sequences might be beneficial in the control of the spread of blaNDM-1-harboring CREC isolates. The linkages between blaNDM-1-carrying plasmid, patient information, and time of collection will be elucidated to track the horizontal gene transfer in the future.
Collapse
Affiliation(s)
- Kalyarat Kaewnirat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Surachat Chuaychob
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Arnon Chukamnerd
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Komwit Surachat
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Computational Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - May Thet Paing Phoo
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanitnart Phaothong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chanida Sakunrang
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Kongpop Jeenkeawpiam
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Correspondence: Sarunyou Chusri, Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand, Tel +66 8 973 40446, Email
| |
Collapse
|
5
|
Treatment of Severe Infections Due to Metallo-Betalactamases Enterobacterales in Critically Ill Patients. Antibiotics (Basel) 2022; 11:antibiotics11020144. [PMID: 35203747 PMCID: PMC8868391 DOI: 10.3390/antibiotics11020144] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Metallo-beta-lactamases-producing (MBL) Enterobacterales is a growing problem worldwide. The optimization of antibiotic therapy is challenging. The pivotal available therapeutic options are either the combination of ceftazidime/avibactam and aztreonam or cefiderocol. Colistin, fosfomycin, tetracyclines and aminoglycosides are also frequently effective in vitro, but are associated with less bactericidal activity or more toxicity. Prior to the availability of antibiotic susceptibility testing, severe infections should be treated with a combination therapy. A careful optimization of the pharmacokinetic/pharmacodynamic properties of antimicrobials is instrumental in severe infections. The rules of antibiotic therapy are also reported and discussed. To conclude, treatment of severe MBL infections in critically ill patients is difficult. It should be individualized with a close collaboration of intensivists with microbiologists, pharmacists and infection control practitioners.
Collapse
|
6
|
Matteoli FP, Pedrosa-Silva F, Dutra-Silva L, Giachini AJ. The global population structure and beta-lactamase repertoire of the opportunistic pathogen Serratia marcescens. Genomics 2021; 113:3523-3532. [PMID: 34400240 DOI: 10.1016/j.ygeno.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/15/2021] [Accepted: 08/11/2021] [Indexed: 11/26/2022]
Abstract
Serratia marcescens is a global spread nosocomial pathogen. This rod-shaped bacterium displays a broad host range and worldwide geographical distribution. Here we analyze an international collection of this multidrug-resistant, opportunistic pathogen from 35 countries to infer its population structure. We show that S. marcescens comprises 12 lineages; Sm1, Sm4, and Sm10 harbor 78.3% of the known environmental strains. Sm5, Sm6, and Sm7 comprise only human-associated strains which harbor smallest pangenomes, genomic fluidity and lowest levels of core recombination, indicating niche specialization. Sm7 and Sm9 lineages exhibit the most concerning resistome; blaKPC-2 plasmid is widespread in Sm7, whereas Sm9, also an anthropogenic-exclusive lineage, presents highest plasmid/lineage size ratio and plasmid-diversity encoding metallo-beta-lactamases comprising blaNDM-1. The heterogeneity of resistance patterns of S. marcescens lineages elucidated herein highlights the relevance of surveillance programs, using whole-genome sequencing, to provide insights into the molecular epidemiology of carbapenemase producing strains of this species.
Collapse
|
7
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
8
|
Abdelraouf K, Reyes S, Nicolau DP. The paradoxical in vivo activity of β-lactams against metallo-β-lactamase-producing Enterobacterales is not restricted to carbapenems. J Antimicrob Chemother 2021; 76:684-691. [PMID: 33179050 DOI: 10.1093/jac/dkaa467] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Using murine models of infection, we previously reported the potent in vivo activity of carbapenems against MBL-producing Enterobacterales despite the observed resistance in vitro. In the current study, we examined the in vivo activity of a cefepime human-simulated regimen against MBL-producing Enterobacterales in a murine thigh infection model. METHODS A population of clinical isolates and isogenic engineered MBL-producing Enterobacterales transformants expressing MBLs but no detectable cefepime-hydrolysing serine β-lactamases were utilized. KPC-producing isolates were included as positive controls. Cefepime, piperacillin/tazobactam and meropenem MICs were determined using broth microdilution in conventional CAMHB and EDTA-supplemented (zinc-limited) broth. In vivo efficacy of a cefepime human-simulated regimen (2 g q8h as a 2 h infusion) was determined in the neutropenic murine thigh infection model against the test strains. Efficacy was measured as the change in log10 cfu/thigh at 24 h compared with 0 h controls. RESULTS MBL-producing Enterobacterales strains were found to be cefepime, piperacillin/tazobactam and meropenem non-susceptible in conventional broth. Supplementation with EDTA at a concentration of 300 mg/L resulted in multi-fold reduction in the MICs and restoration of susceptibility. In accordance with the MICs generated in zinc-limited broth, administration of a cefepime human-simulated regimen was associated with substantial bacterial reductions among mice infected with MBL-producing Enterobacterales. Absence of MIC reduction in zinc-limited broth and lack of efficacy among mice infected with KPC-producing isolates were observed. CONCLUSIONS For MBL-producing Enterobacterales, susceptibility testing with Mueller-Hinton broth, a zinc-rich testing medium, is flawed since it does not recapitulate the host environment, in which zinc concentrations are low.
Collapse
Affiliation(s)
- Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - Sergio Reyes
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
9
|
Asempa TE, Abdelraouf K, Nicolau DP. Metallo-β-lactamase resistance in Enterobacteriaceae is an artefact of currently utilized antimicrobial susceptibility testing methods. J Antimicrob Chemother 2021; 75:997-1005. [PMID: 31930305 DOI: 10.1093/jac/dkz532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/26/2019] [Accepted: 11/30/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND MBLs are a major contributor to β-lactam resistance when tested using CAMHB. Despite in vitro resistance, positive outcomes have been reported in MBL-infected patients following carbapenem treatment. The impact of physiological zinc concentrations on this in vitro-in vivo MBL discordance warrants investigation. OBJECTIVES To evaluate meropenem in vitro activity against MBL-producing Enterobacteriaceae in zinc-depleted broth (Chelex-CAMHB, EDTA-CAMHB) and assess meropenem efficacy in murine infection models. METHODS Neutropenic mice received a meropenem human-simulated regimen of 2 g q8h or levofloxacin 750 mg q24h (for model validation). Zinc concentrations were determined in conventional CAMHB, zinc-depleted CAMHB and epithelial lining fluid (ELF) of lung-infected mice. RESULTS All MBL-producing isolates (NDM, n = 25; VIM, n = 3; IMP, n = 2) examined were meropenem resistant in CAMHB and susceptible in zinc-depleted CAMHB (5- to 11-fold reduction), with zinc depletion having no impact on levofloxacin MICs. Zinc concentrations (mean ± SD) in CAMHB were 0.959 ± 0.038 mg/L and in both zinc-depleted CAMHB and ELF were <0.002 mg/L. In vivo, levofloxacin displayed predictable efficacy consistent with its phenotypic profile, while meropenem produced >1 log unit bacterial killing despite in vitro resistance in conventional CAMHB. CONCLUSIONS Results indicate that meropenem in vivo efficacy is best represented by the pharmacodynamic profile generated using MICs determined in zinc-depleted media for MBL-producing Enterobacteriaceae. These translational data suggest that the use of conventional CAMHB for MBL susceptibility testing is inappropriate in distinguishing meaningful in vivo resistance given that zinc concentrations are supraphysiological in conventional CAMHB and negligible at infection sites.
Collapse
Affiliation(s)
- Tomefa E Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA
| | - Kamilia Abdelraouf
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital, 80 Seymour Street, Hartford, CT, USA
| |
Collapse
|
10
|
Activity of β-Lactam Antibiotics against Metallo-β-Lactamase-Producing Enterobacterales in Animal Infection Models: a Current State of Affairs. Antimicrob Agents Chemother 2021; 65:AAC.02271-20. [PMID: 33782001 DOI: 10.1128/aac.02271-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) result in resistance to nearly all β-lactam antimicrobial agents, as determined by currently employed susceptibility testing methods. However, recently reported data demonstrate that variable and supraphysiologic zinc concentrations in conventional susceptibility testing media compared with physiologic (bioactive) zinc concentrations may be mediating discordant in vitro-in vivo MBL resistance. While treatment outcomes in patients appear suggestive of this discordance, these limited data are confounded by comorbidities and combination therapy. To that end, the goal of this review is to evaluate the extent of β-lactam activity against MBL-harboring Enterobacterales in published animal infection model studies and provide contemporary considerations to facilitate the optimization of current antimicrobials and development of novel therapeutics.
Collapse
|
11
|
Retrospective Data Insight into the Global Distribution of Carbapenemase-Producing Pseudomonas aeruginosa. ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10050548. [PMID: 34065054 PMCID: PMC8151531 DOI: 10.3390/antibiotics10050548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to determine the global distribution and molecular characteristics of carbapenemase-producing Pseudomonas aeruginosa isolates. A total of 328 (11.1%, 328/2953) carbapenemase-producing P. aeruginosa isolates from humans were obtained from public databases as of October 2019. Of which, the blaVIM and blaIMP genes were the most prevalent carbapenemases in the P. aeruginosa isolates. These carbapenemase-producing P. aeruginosa isolates possessed 34 distinct sequence types (STs) and six predominated: ST357, ST823, ST308, ST233, ST175 and ST111. The ST357 and ST823 isolates were primarily found detected in Asia and all ST175 isolates were found in Europe. The ST308, ST233 and ST111 isolates were spread worldwide. Further, all ST823 isolates and the majority of ST111, ST233 and ST175 isolates carried blaVIM but ST357 isolates primarily carried blaIMP. ST308 isolates provide a key reservoir for the spread of blaVIM, blaIMP and blaNDM. WGS analysis revealed that ST111 carried a great diversity of ARG types (n = 23), followed by ST357 (n = 21), ST308 (n = 19), ST233 (n = 18), ST175 (n = 14) and ST823 (n = 10). The ST175 isolates carried a more diversity and frequent of aminoglycoside ARGs, and ST233 isolates harbored more tetracycline ARGs. Our findings revealed that different carbapenem resistance genes were distributed primarily in variant STs of P. aeruginosa isolates, these isolates also possessed an extensive geographical distribution that highlights the need for surveillance studies that detect carbapenemase-producing P. aeruginosa isolates in humans.
Collapse
|
12
|
Livermore DM, Nicolau DP, Hopkins KL, Meunier D. Carbapenem-Resistant Enterobacterales, Carbapenem Resistant Organisms, Carbapenemase-Producing Enterobacterales, and Carbapenemase-Producing Organisms: Terminology Past its "Sell-By Date" in an Era of New Antibiotics and Regional Carbapenemase Epidemiology. Clin Infect Dis 2021; 71:1776-1782. [PMID: 32025698 DOI: 10.1093/cid/ciaa122] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem resistance in Gram-negative bacteria is a public health concern. Consequently, numerous government and agency reports discuss carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant organisms (CROs). Unfortunately, these terms are fuzzy. Do they include (1) Proteeae with inherent imipenem resistance; (2) porin-deficient Enterobacterales resistant to ertapenem but not other carbapenems; (3) Enterobacterales with OXA-48-like enzymes that remain "carbapenem susceptible" at breakpoint; and (4) Pseudomonas aeruginosa that merely lack porin OprD? Counting CPE or CPOs is better but still insufficient, because different carbapenemases have differing treatment implications, particularly for new β-lactam/β-lactamase inhibitor combinations. At the least, it is essential for authors, journals, and regulatory agencies to specify the carbapenemases meant. The future may demand even greater precision, for mutations can alter hydrolytic activity, and the ability to confer resistance, within carbapenemase families.
Collapse
Affiliation(s)
- David M Livermore
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Katie L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Danièle Meunier
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
13
|
Tan X, Kim HS, Baugh K, Huang Y, Kadiyala N, Wences M, Singh N, Wenzler E, Bulman ZP. Therapeutic Options for Metallo-β-Lactamase-Producing Enterobacterales. Infect Drug Resist 2021; 14:125-142. [PMID: 33500635 PMCID: PMC7822077 DOI: 10.2147/idr.s246174] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The spread of metallo-β-lactamase (MBL)-producing Enterobacterales worldwide without the simultaneous increase in active antibiotics makes these organisms an urgent public health threat. This review summarizes recent advancements in diagnostic and treatment strategies for infections caused by MBL-producing Enterobacterales. Adequate treatment of patients infected with MBL-producing Enterobacterales relies on detection of the β-lactamase in the clinic. There are several molecular platforms that are currently available to identify clinically relevant MBLs as well as other important serine-β-lactamases. Once detected, there are several antibiotics that have historically been used for the treatment of MBL-producing Enterobacterales. Antimicrobials such as aminoglycosides, tetracyclines, fosfomycin, and polymyxins often show promising in vitro activity though clinical data are currently lacking to support their widespread use. Ceftazidime-avibactam combined with aztreonam is promising for treatment of infections caused by MBL-producing Enterobacterales and currently has the most clinical data of any available antibiotic to support its use. While cefiderocol has displayed promising activity against MBL-producing Enterobacterales in vitro and in preliminary clinical studies, further clinical studies will better shed light on its place in treatment. Lastly, there are several promising MBL inhibitors in the pipeline, which may further improve the treatment of MBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Xing Tan
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Hwan Seung Kim
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | | | - Yanqin Huang
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Neeraja Kadiyala
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Marisol Wences
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Nidhi Singh
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Eric Wenzler
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| | - Zackery P Bulman
- Department of Pharmacy Practice, University of Illinois at Chicago College of Pharmacy, Chicago, IL, USA
| |
Collapse
|
14
|
Bassetti M, Di Pilato V, Giani T, Vena A, Rossolini GM, Marchese A, Giacobbe DR. Treatment of severe infections due to metallo-β-lactamases-producing Gram-negative bacteria. Future Microbiol 2020; 15:1489-1505. [PMID: 33140656 DOI: 10.2217/fmb-2020-0210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the last decades, there was an important paucity of agents for adequately treating infections due to metallo-β-lactamases-producing Gram-negative bacteria (MBL-GNB). Cefiderocol, a novel siderophore cephalosporin showing in vitro activity against MBL-GNB, has been recently marketed, and a combination of aztreonam and ceftazidime/avibactam has shown a possible favorable effect on survival of patients with severe MBL-GNB infections in observational studies. Other agents showing in vitro activity against MBL-GNB are currently in clinical development (e.g., cefepime/taniborbactam, LYS228, cefepime/zidebactam) that could be an important addition to our future armamentarium for severe MBL-GNB infections. Nonetheless, we should not discontinue our efforts to optimize the use of non-β-lactams agents, since they could remain an essential last-resort or alternative option in selected cases.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Tommaso Giani
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
- Microbiology & Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Anna Marchese
- Department of Surgical Sciences & Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Microbiology Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| | - Daniele R Giacobbe
- Infectious Diseases Unit, Ospedale Policlinico San Martino - IRCCS, Genoa, Italy
| |
Collapse
|
15
|
Boyd SE, Livermore DM, Hooper DC, Hope WW. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob Agents Chemother 2020; 64:e00397-20. [PMID: 32690645 PMCID: PMC7508574 DOI: 10.1128/aac.00397-20] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Modern medicine is threatened by the global rise of antibiotic resistance, especially among Gram-negative bacteria. Metallo-β-lactamase (MBL) enzymes are a particular concern and are increasingly disseminated worldwide, though particularly in Asia. Many MBL producers have multiple further drug resistances, leaving few obvious treatment options. Nonetheless, and more encouragingly, MBLs may be less effective agents of carbapenem resistance in vivo, under zinc limitation, than in vitro Owing to their unique structure and function and their diversity, MBLs pose a particular challenge for drug development. They evade all recently licensed β-lactam-β-lactamase inhibitor combinations, although several stable agents and inhibitor combinations are at various stages in the development pipeline. These potential therapies, along with the epidemiology of producers and current treatment options, are the focus of this review.
Collapse
Affiliation(s)
- Sara E Boyd
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, United Kingdom
| | - David M Livermore
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William W Hope
- Antimicrobial Pharmacodynamics and Therapeutics, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
MacDonald JW, Chibabhai V. Evaluation of the RESIST-4 O.K.N.V immunochromatographic lateral flow assay for the rapid detection of OXA-48, KPC, NDM and VIM carbapenemases from cultured isolates. Access Microbiol 2019; 1:e000031. [PMID: 32974526 PMCID: PMC7470286 DOI: 10.1099/acmi.0.000031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/17/2019] [Indexed: 11/18/2022] Open
Abstract
Purpose This study aimed to evaluate the performance of the RESIST-4 O.K.N.V immunochromatographic lateral flow assay for the detection of OXA-48, KPC, NDM and VIM carbapenemases in 100 clinical Enterobacteriaceae isolates using solid culture media. Methodology In total, 100 clinical Enterobacteriaceae isolates with characterized β-lactamase enzymes (OXA-48 n=46, KPC n =4, NDM n =43 and VIM n =10) were evaluated using the RESIST-4 O.K.N.V assay. The assay was also evaluated using carbapenem-sensitive control strains and confirmed non-carbapenemase-producing Enterobacteriaceae clinical isolates resistant to carbapenems. Inter-rater agreement of the test was evaluated by four different users who tested 11 randomly selected isolates daily over 3 days. Results Overall accuracy of the assay was 99.5 %. For the detection of KPC, OXA-48 and its variants and VIM the assay correctly identified 100 % of the isolates when compared to PCR. Initial performance for NDM detection was sensitivity=95.3 %, specificity=100 %. Two PCR positive Providencia rettgeri isolates rendered false negative results on the assay. Retesting from a carbapenem zone of inhibition rendered a positive result for both isolates increasing the sensitivity to 100 %. No false positive results or cross reactions were detected. Conclusion The RESIST-4 O.K.N.V is reliable, sensitive and specific for the detection of OXA-48, KPC, NDM and VIM carbapenemases. Further evaluation on improving NDM detection in organisms from the Proteeae tribe is warranted to determine optimal test conditions.
Collapse
Affiliation(s)
- James Wesley MacDonald
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg, South Africa.,Clinical Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| | - Vindana Chibabhai
- Department of Clinical Microbiology and Infectious Diseases, University of the Witwatersrand, Johannesburg, South Africa.,Clinical Microbiology Laboratory, Charlotte Maxeke Johannesburg Academic Hospital, National Health Laboratory Service, South Africa
| |
Collapse
|
17
|
Mueller L, Ottiger C, Demord A, Poirel L, Nordmann P. Multiple colonization with carbapenem-resistant Gram-negative bacteria acquired in India and transferred to Switzerland. Infection 2019; 47:669-671. [PMID: 30972715 DOI: 10.1007/s15010-019-01307-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/04/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Linda Mueller
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700, Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Cornelia Ottiger
- Institute for Laboratory Medicine, Cantonal Hospital of Aarau, Aarau, Switzerland
| | - Anthony Demord
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700, Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700, Fribourg, Switzerland. .,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland. .,INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland.
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 18, 1700, Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.,INSERM European Unit (IAME, France), University of Fribourg, Fribourg, Switzerland.,University Hospital Center and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Copper Ions and Coordination Complexes as Novel Carbapenem Adjuvants. Antimicrob Agents Chemother 2018; 62:AAC.02280-17. [PMID: 29133551 DOI: 10.1128/aac.02280-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Enterobacteriaceae are urgent threats to global human health. These organisms produce β-lactamases with carbapenemase activity, such as the metallo-β-lactamase NDM-1, which is notable due to its association with mobile genetic elements and the lack of a clinically useful inhibitor. Here we examined the ability of copper to inhibit the activity of NDM-1 and explored the potential of a copper coordination complex as a mechanism to efficiently deliver copper as an adjuvant in clinical therapeutics. An NDM-positive Escherichia coli isolate, MS6192, was cultured from the urine of a patient with a urinary tract infection. MS6192 was resistant to antibiotics from multiple classes, including diverse β-lactams (penicillins, cephalosporins, and carbapenems), aminoglycosides, and fluoroquinolones. In the presence of copper (range, 0 to 2 mM), however, the susceptibility of MS6192 to the carbapenems ertapenem and meropenem increased markedly. In standard checkerboard assays, copper decreased the MICs of ertapenem and meropenem against MS6192 in a dose-dependent manner, suggesting a synergistic mode of action. To examine the inhibitory effect of copper in the absence of other β-lactamases, the blaNDM-1 gene from MS6192 was cloned and expressed in a recombinant E. coli K-12 strain. Analysis of cell extracts prepared from this strain revealed that copper directly inhibited NDM-1 activity, which was confirmed using purified recombinant NDM-1. Finally, delivery of copper at a low concentration of 10 μM by using the FDA-approved coordination complex copper-pyrithione sensitized MS6192 to ertapenem and meropenem in a synergistic manner. Overall, this work demonstrates the potential use of copper coordination complexes as novel carbapenemase adjuvants.
Collapse
|