1
|
Redruello-Guerrero P, Córdoba-Peláez P, Láinez-Ramos-Bossini AJ, Rivera-Izquierdo M, Mesas C, Ortiz R, Prados J, Perazzoli G. Liposomal Doxorubicin In vitro and In vivo Assays in Non-small Cell Lung Cancer: A Systematic Review. Curr Drug Deliv 2024; 21:1346-1361. [PMID: 38099532 DOI: 10.2174/0115672018272162231116093143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 07/23/2024]
Abstract
BACKGROUND Liposomal Doxorubicin (Doxil®) was one of the first nanoformulations approved for the treatment of solid tumors. Although there is already extensive experience in its use for different tumors, there is currently no grouped evidence of its therapeutic benefits in non-small cell lung cancer (NSCLC). A systematic review of the literature was performed on the therapeutic effectiveness and benefits of Liposomal Doxil® in NSCLC. METHODS A total of 1022 articles were identified in publications up to 2020 (MEDLINE, Cochrane, Web of Science Core Collection and Scopus). After applying inclusion criteria, the number was restricted to 114, of which 48 assays, including in vitro (n=20) and in vivo (animals, n=35 and humans, n=6) studies, were selected. RESULTS The maximum inhibitory concentration (IC50), tumor growth inhibition rate, response and survival rates were the main indices for evaluating the efficacy and effectiveness of Liposomal DOX. These have shown clear benefits both in vitro and in vivo, improving the IC50 of free DOX or untargeted liposomes, depending on their size, administration, or targeting. CONCLUSION Doxil® significantly reduced cellular proliferation in vitro and improved survival in vivo in both experimental animals and NSCLC patients, demonstrating optimal safety and pharmacokinetic behavior indices. Although our systematic review supports its benefits for the treatment of NSCLC, additional clinical trials with larger sample sizes are necessary to obtain more precise clinical data on its activity and effects in humans.
Collapse
Affiliation(s)
- Pablo Redruello-Guerrero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | | | | | - Mario Rivera-Izquierdo
- Department of Preventive Medicine and Public Health, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. Granada), Granada, 18014 Granada, Spain
| |
Collapse
|
2
|
Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar Drugs 2022; 21:md21010011. [PMID: 36662184 PMCID: PMC9861938 DOI: 10.3390/md21010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alginates (ALG) have been used in biomedical and pharmaceutical technologies for decades. ALG are natural polymers occurring in brown algae and feature multiple advantages, including biocompatibility, low toxicity and mucoadhesiveness. Moreover, ALG demonstrate biological activities per se, including anti-hyperlipidemic, antimicrobial, anti-reflux, immunomodulatory or anti-inflammatory activities. ALG are characterized by gelling ability, one of the most frequently utilized properties in the drug form design. ALG have numerous applications in pharmaceutical technology that include micro- and nanoparticles, tablets, mucoadhesive dosage forms, wound dressings and films. However, there are some shortcomings, which impede the development of modified-release dosage forms or formulations with adequate mechanical strength based on pure ALG. Other natural polymers combined with ALG create great potential as drug carriers, improving limitations of ALG matrices. Therefore, in this paper, ALG blends with pectins, chitosan, gelatin, and carrageenans were critically reviewed.
Collapse
|
3
|
Functionalized Mesoporous Silica as Doxorubicin Carriers and Cytotoxicity Boosters. NANOMATERIALS 2022; 12:nano12111823. [PMID: 35683677 PMCID: PMC9182127 DOI: 10.3390/nano12111823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) bearing methyl, thiol or glucose groups were synthesized, and their encapsulation and release behaviors for the anticancer drug Doxorubicin (Dox) were investigated in comparison with nonporous homologous materials. The chemical modification of thiol-functional silica with a double bond glucoside was completed for the first time, by green thiol-ene photoaddition. The MSNs were characterized in terms of structure (FT-IR, Raman), morphology (TEM), porosity (nitrogen sorption–desorption) and Zeta potential measurements. The physical interactions responsible for the Dox encapsulation were investigated by analytic methods and MD simulations, and were correlated with the high loading efficiency of MSNs with thiol and glucose groups. High release at pH 5 was observed in most cases, with thiol-MSN exhibiting 98.25% cumulative release in sustained profile. At pH 7.4, the glucose-MSN showed 75.4% cumulative release, while the methyl-MSN exhibited a sustained release trend. The in vitro cytotoxicity was evaluated on NDHF, MeWo and HeLa cell lines by CellTiter-Glo assay, revealing strong cytotoxic effects in all of the loaded silica at low equivalent Dox concentration and selectivity for cancer cells. Atypical applications of each MSN as intravaginal, topical or oral Dox administration route could be proposed.
Collapse
|
4
|
Kim JE, Park YJ. Hyaluronan self-agglomerating nanoparticles for non-small cell lung cancer targeting. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00115-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Owing to the limited amount of research, there are no nanoparticle-based anticancer agents that use hydrophilic drugs. Therefore, we developed irinotecan-loaded self-agglomerating hyaluronan nanoparticles (ISHNs). While irinotecan has high hydrophilicity, the resulting nanoparticle should possess high anticancer drug-loading capacity and allow selective targeting of the cluster of differentiation 44 (CD44) protein, which is overexpressed on the surface of tumor cells.
Results
The ISHNs were successfully made with hyaluronan (HA) as a targeting moiety, FeCl3 as a binder, and D-glutamic acid (GA) as a stabilizer. The ISHNs self-agglomerated via chelating bonding and were lyophilized using a freeze dryer. The particle diameter and zeta potential of the ISHNs were 93.8 ± 4.48 nm and − 36.3 ± 0.28 mV, respectively; a relatively narrow size distribution was observed. The drug fixation yield and drug-loading concentration were 58.3% and 1.75 mg/mL, respectively. Affinity studies revealed a tenfold stronger targeting to H23 (CD44+) non-small-cell lung cancer (NSCLC) cells, than of A549 (CD44−) cells.
Conclusion
We developed irinotecan-loaded ISHNs, which comprised irinotecan hydrochloride as a water-soluble anticancer agent, HA as a targeting moiety, FeCl3 as a binder for self-agglomeration, and GA as a stabilizer; HA is a binding material for CD44 in NSCLC cells. Owing to their ease of manufacture, excellent stability, non-cell toxicity and CD44-targeting ability, ISHNs are potential nanocarriers for passive and active tumor targeting.
Collapse
|
5
|
Yadav N, Francis AP, Priya VV, Patil S, Mustaq S, Khan SS, Alzahrani KJ, Banjer HJ, Mohan SK, Mony U, Rajagopalan R. Polysaccharide-Drug Conjugates: A Tool for Enhanced Cancer Therapy. Polymers (Basel) 2022; 14:polym14050950. [PMID: 35267773 PMCID: PMC8912870 DOI: 10.3390/polym14050950] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most widespread deadly diseases, following cardiovascular disease, worldwide. Chemotherapy is widely used in combination with surgery, hormone and radiation therapy to treat various cancers. However, chemotherapeutic drugs can cause severe side effects due to non-specific targeting, poor bioavailability, low therapeutic indices, and high dose requirements. Several drug carriers successfully overcome these issues and deliver drugs to the desired sites, reducing the side effects. Among various drug delivery systems, polysaccharide-based carriers that target only the cancer cells have been developed to overcome the toxicity of chemotherapeutics. Polysaccharides are non-toxic, biodegradable, hydrophilic biopolymers that can be easily modified chemically to improve the bioavailability and stability for delivering therapeutics into cancer tissues. Different polysaccharides, such as chitosan, alginates, cyclodextrin, pullulan, hyaluronic acid, dextran, guar gum, pectin, and cellulose, have been used in anti-cancer drug delivery systems. This review highlights the recent progress made in polysaccharides-based drug carriers in anti-cancer therapy.
Collapse
Affiliation(s)
- Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
| | - Arul Prakash Francis
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Veeraraghavan Vishnu Priya
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Shazia Mustaq
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sameer Saeed Khan
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (S.P.); (S.S.K.)
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Hamsa Jameel Banjer
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia; (K.J.A.); (H.J.B.)
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Research Institute & Simulation, Panimalar Medical College Hospital, Varadharajapuram, Poonamallee, Chennai 600123, India;
| | - Ullas Mony
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Institute of Medical & Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India; (V.V.P.); (U.M.)
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (N.Y.); (A.P.F.)
- Correspondence: ; Tel.: +91-(96)-7784-7337
| |
Collapse
|
6
|
Zuo C, Zhang H, Liang S, Teng W, Bao C, Li D, Hu Y, Wang Q, Li Z, Li Y. The alleviation of lipid deposition in steatosis hepatocytes by capsaicin-loaded α-lactalbumin nanomicelles via promoted endocytosis and synergetic multiple signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
7
|
Preparation of Hot-Melt Extruded Dosage Form for Enhancing Drugs Absorption Based on Computational Simulation. Pharmaceutics 2020; 12:pharmaceutics12080757. [PMID: 32796665 PMCID: PMC7463902 DOI: 10.3390/pharmaceutics12080757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to control the dissolution rate and permeability of cilostazol. To enhance the dissolution rate of the active pharmaceutical ingredient (API), hot-melt extrusion (HME) technology was applied to prepare a solid dispersion (SD). To control permeability in the gastrointestinal tract regardless of food intake, the HME process was optimized based on physiologically based pharmacokinetic (PBPK) simulation. The extrudates were produced using a laboratory-scale twin-screw hot-melt extruder with co-rotatory screws and a constant feeding rate. Next, for PBPK simulation, parameter-sensitive analysis (PSA) was conducted to determine the optimization approach direction. As demonstrated by the dissolution test, the solubility of extrudate was enhanced comparing cilostazol alone. Based on the PSA analysis, the surfactant induction was a crucial factor in cilostazol absorption; thus, an extrudate with an even distribution of lipids was produced using hot-melt extrusion technology, for inducing the bile salts in the gastrointestinal tract. In vivo experiments with rats demonstrated that the optimized hot-melt extruded formulation was absorbed more rapidly with lower deviation and regardless of the meal consumed when compared to marketed cilostazol formulations.
Collapse
|
8
|
Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 2020; 164:2197-2203. [PMID: 32763404 DOI: 10.1016/j.ijbiomac.2020.07.274] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects and the rapid emergence of drug resistance in cancer cells are major problems in the chemotherapy utilizing anthracyclines, with a difference between cellular response at nano and micro scale levels. Understanding this situation is more complicated issue to attain efficient targeted formulations with low unexpected toxicity in patients. On nano-scale level, considering properties of nano-bio interaction in all relevant parts of the body may offer clue for suitable formulations. Four main strategies comprising PEGylation, surface charging, targeting, and stimuli responsiveness can be deployed to improve the liposomal and polymeric nanoformulations that can efficiently deliver common anthracyclines namely daunorubicin (DAU), doxorubicin (DOX), idarubicin (IDA), and epirubicin (EPI). Herein, the advances and challenges pertaining to the formulations of these anticancer drugs via liposomal and polymeric nanoformulations, are discussed.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
9
|
Korani M, Korani S, Zendehdel E, Nikpoor AR, Jaafari MR, Orafai HM, Johnston TP, Sahebkar A. Enhancing the Therapeutic Efficacy of Bortezomib in Cancer Therapy Using Polymeric Nanostructures. Curr Pharm Des 2020; 25:4883-4892. [DOI: 10.2174/1381612825666191106150018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/01/2019] [Indexed: 12/16/2022]
Abstract
:
Bortezomib (VELCADE®) is a boronate peptide and first-in-class proteasome inhibitor serving an
important role in degenerating several intracellular proteins. It is a reversible inhibitor of the 26S proteasome,
with antitumor activity and antiproliferative properties. This agent principally exerts its antineoplastic effects by
inhibiting key players in the nuclear factor κB (NFκB) pathway involved in cell proliferation, apoptosis, and
angiogenesis. This medication is used in the management of multiple myeloma. However, more recently, it has
been used as a therapeutic option for mantle cell lymphoma. While promising, bortezomib has limited clinical
applications due to its adverse effects (e.g., hematotoxicity and peripheral neuropathy) and low effectiveness in
solid tumors resulting from its poor penetration into such masses and suboptimal pharmacokinetic parameters.
Other limitations to bortezomib include its low chemical stability and bioavailability, which can be overcome by
using nanoparticles for its delivery. Nanoparticle delivery systems can facilitate the targeted delivery of chemotherapeutic
agents in high doses to the target site, while sparing healthy tissues. Therefore, this drug delivery
system has provided a solution to circumvent the limitations faced with the delivery of traditional cancer chemotherapeutic
agents. Our aim in this review was to describe polymer-based nanocarriers that can be used for the
delivery of bortezomib in cancer chemotherapy.
Collapse
Affiliation(s)
- Mitra Korani
- Nanotechnology Research Center, Buali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Zendehdel
- Department of Biochemistry and Biophysics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Pharmaceutics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein M. Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri- Kansas City, Kansas City, Missouri, United States
| | | |
Collapse
|
10
|
Kumar R, Singh A, Garg N. Acoustic Cavitation-Assisted Formulation of Solid Lipid Nanoparticles using Different Stabilizers. ACS OMEGA 2019; 4:13360-13370. [PMID: 31460464 PMCID: PMC6705237 DOI: 10.1021/acsomega.9b01532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/26/2019] [Indexed: 05/04/2023]
Abstract
Because of excellent bioavailability and high biocompatibility, solid lipid nanoparticles (SLNs) have gained attention in recent years, especially in drug delivery systems. SLNs are composed of a drug that is loaded in a lipid matrix and stabilized by surfactants. In this work, we have investigated the feasibility of the acoustic cavitation-assisted hot melt mixing method for the formulation of SLNs using different stabilizers. A lipid Compritol 888 ATO (CPT) and a poorly water-soluble drug ketoprofen (KP) were used as a model lipid and drug, respectively. Gelucire 50/13 (GEL), poloxamer 407 (POL), and Pluronic F-127 (PLU) were used as the stabilizers. The effect of the stabilizers on the physico-chemical properties of SLNs was thoroughly studied in this work. The particle size and stability in water at different temperatures were measured using a dynamic light scattering method. The spherical shape (below 250 nm) and core-shell morphology were confirmed by field-emission scanning electron microscopy and transmission electron microscopy. The chemical, crystal, and thermal properties of SLNs were studied by FTIR, XRD analysis, and DSC, respectively. SLNs prepared using different stabilizers showed an encapsulation efficiency of nearly 90% and a drug loading efficiency of 12%. SLNs showed more than 90% of drug released in 72 h and increased with pH was confirmed using in vitro drug release studies. SLNs were nontoxic to raw 264.7 cells. All stabilizers were found suitable for acoustic cavitation-assisted SLN formulation with high encapsulation efficiency and drug loading and good biocompatibility.
Collapse
Affiliation(s)
- Raj Kumar
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Ashutosh Singh
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Neha Garg
- School
of Basic Sciences, Advanced Material Research Centre, and Bio-X Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
11
|
Tunsirikongkon A, Pyo YC, Kim DH, Lee SE, Park JS. Optimization of Polyarginine-Conjugated PEG Lipid Grafted Proliposome Formulation for Enhanced Cellular Association of a Protein Drug. Pharmaceutics 2019; 11:pharmaceutics11060272. [PMID: 31212607 PMCID: PMC6630419 DOI: 10.3390/pharmaceutics11060272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to develop an oral proliposomal powder of protein using poly-l-arginine-conjugated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG) (PLD) for enhancing cellular association upon reconstitution and to compare its effects with a non-grafted and PEGylated formulation. Cationic proliposome (CATL), PLD-grafted CATL (PLD-CATL), PEGylated CATL (PEG CATL), and PLD grafted-PEG CATL (PLD-PEG CATL) were prepared and compared. Successful conjugation between poly-l-arginine and DSPE-PEG was confirmed by 1H NMR and FT-IR. PLD was successfully grafted onto the proliposomal powder during the slurry process. Although reconstituted liposomal sizes of CATL and PLD-CATL were increased by agglomeration, PEGylation reduced the agglomeration and increased the encapsulation. The viabilities of cells treated with both CATL and PLD-CATL formulations were low but increased following PEGylation. With regard to cellular association, PLD-CATL enhanced cellular association/uptake more rapidly than did CATL. Upon PEGylation, PEG CATL showed a lower level of cellular association/uptake compared with CATL while PLD-PEG CATL did not exhibit the rapid cellular association/uptake as seen with PLD-CATL. However, PLD-PEG CATL still enhanced the higher cellular association/uptake than PEG CATL did without PLD. In conclusion, proliposomes with PLD could accelerate cellular association/uptake but also caused high cellular toxicity. PEGylation reduced cellular toxicity and also changed the cellular association pattern of the PLD formulation.
Collapse
Affiliation(s)
- Amolnat Tunsirikongkon
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
- Division of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Rangsit Center, Pathumthani 12120, Thailand.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
12
|
Tran P, Pyo YC, Kim DH, Lee SE, Kim JK, Park JS. Overview of the Manufacturing Methods of Solid Dispersion Technology for Improving the Solubility of Poorly Water-Soluble Drugs and Application to Anticancer Drugs. Pharmaceutics 2019; 11:E132. [PMID: 30893899 PMCID: PMC6470797 DOI: 10.3390/pharmaceutics11030132] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/11/2023] Open
Abstract
Approximately 40% of new chemical entities (NCEs), including anticancer drugs, have been reported as poorly water-soluble compounds. Anticancer drugs are classified into biologic drugs (monoclonal antibodies) and small molecule drugs (nonbiologic anticancer drugs) based on effectiveness and safety profile. Biologic drugs are administered by intravenous (IV) injection due to their large molecular weight, while small molecule drugs are preferentially administered by gastrointestinal route. Even though IV injection is the fastest route of administration and ensures complete bioavailability, this route of administration causes patient inconvenience to visit a hospital for anticancer treatments. In addition, IV administration can cause several side effects such as severe hypersensitivity, myelosuppression, neutropenia, and neurotoxicity. Oral administration is the preferred route for drug delivery due to several advantages such as low cost, pain avoidance, and safety. The main problem of NCEs is a limited aqueous solubility, resulting in poor absorption and low bioavailability. Therefore, improving oral bioavailability of poorly water-soluble drugs is a great challenge in the development of pharmaceutical dosage forms. Several methods such as solid dispersion, complexation, lipid-based systems, micronization, nanonization, and co-crystals were developed to improve the solubility of hydrophobic drugs. Recently, solid dispersion is one of the most widely used and successful techniques in formulation development. This review mainly discusses classification, methods for preparation of solid dispersions, and use of solid dispersion for improving solubility of poorly soluble anticancer drugs.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Yong-Chul Pyo
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Sang-Eun Lee
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jin-Ki Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea.
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| |
Collapse
|
13
|
Kuche K, Bhargavi N, Dora CP, Jain S. Drug-Phospholipid Complex-a Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech 2019; 20:43. [PMID: 30610392 DOI: 10.1208/s12249-018-1252-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/19/2022] Open
Abstract
Among many, the oral route of delivery is considered to be the most favorable route with the highest patient compliance. The main issue with oral delivery is the environmental vulnerability of gastro intestinal tract (G.I.T). The bioavailability could further decrease when drug has poor aqueous solubility and permeability through biological membrane. This drawback could be resolved by employing drug-phospholipid complex strategy, as they utilize mechanism which is similar to the absorption mechanism of nutritional constituents form G.I.T. The drug-phospholipid complexes are considered ideal for oral delivery as they are biodegradable and non-toxic, which enable them to be employed as solubilizer, emulsifier, and as a matrix forming excipient for dugs with poor solubility and/or permeability. The present review compiles the basic know how about the phospholipids and the mechanism through which it improves the bioavailability of drugs. Further, it also compiles the crucial formulation aspects and methods of preparations of drug-phospholipid complex along with its physical and in silico characterization techniques. The increase in number of recent reports involving the utilization of drug-phospholipid complex to improve oral bioavailability of drugs thus explains how vital the strategy is for a successful oral delivery.
Collapse
|
14
|
Amorphous multi-system of celecoxib improves its anti-inflammatory activity in vitro and oral absorption in rats. Int J Pharm 2019; 555:135-145. [DOI: 10.1016/j.ijpharm.2018.11.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/04/2018] [Accepted: 11/17/2018] [Indexed: 01/19/2023]
|
15
|
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019; 25:1312-1334. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.
Collapse
Affiliation(s)
- Patricia Severino
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Classius F da Silva
- Universidade Federal de Sao Paulo, Instituto de Ciências Ambientais, Quimicas e Farmaceuticas, Departamento de Engenharia Quimica, Rua Sao Nicolau, 210, Diadema - SP, CEP 09.913-030, Brazil
| | - Luciana N Andrade
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Daniele de Lima Oliveira
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
16
|
Soe ZC, Poudel BK, Nguyen HT, Thapa RK, Ou W, Gautam M, Poudel K, Jin SG, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J Pharm Sci 2019; 14:40-51. [PMID: 32104437 PMCID: PMC7032194 DOI: 10.1016/j.ajps.2018.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 02/04/2023] Open
Abstract
Folate-targeting self-assembled nanoparticles (NPs) using biocompatible and biodegradable natural polymers chitosan (Cs) and chondroitin sulfate (Chs) were developed to address the major challenge in cancer treatment, the selective delivery of nanoparticles to the target site. In this study, we successfully incorporated a hydrophobic drug, bortezomib (Bor), into folic acid (FA)-conjugated Cs/Chs self-assembled NPs (Bor/Cs/Chs-FA) for colorectal cancer therapy. The particle size and polydispersity index of Bor/Cs/Chs-FA were ∼196.5 ± 1.2 nm and ∼0.21 ± 0.5, respectively. A pH-dependent release profile was observed, facilitating cancer cell-targeted drug release under an acidic tumor microenvironment. Moreover, in vitro data revealed enhanced cellular uptake and apoptosis in folate receptor-expressing colorectal cancer cells (HCT-116 and HT-29) as compared to that in lung cancer cells (A549), which do not express folate receptors. Furthermore, intravenous administration of Bor/Cs/Chs-FA in a HCT-116 bearing xenograft mouse model showed that the NPs were a safe and effective drug delivery system. The results suggest that folate-targeted nanoparticle can be effectively applied for efficient chemotherapy of colorectal cancer.
Collapse
Affiliation(s)
- Zar Chi Soe
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
- Department of Pharmaceutics, University of Pharmacy (Yangon), Yangon 11031, Myanmar
| | - Bijay Kumar Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Haany University, Gyeongsan 712715, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan 426791, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 712749, Republic of Korea
| |
Collapse
|
17
|
pH-independent controlled release tablets containing nanonizing valsartan solid dispersions for less variable bioavailability in humans. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Nguyen VH, Lee BJ. Synthetic optimization of gelatin-oleic conjugate and aqueous-based formation of self-assembled nanoparticles without cross-linkers. Macromol Res 2017. [DOI: 10.1007/s13233-017-5056-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|