1
|
Tan X, Zhang Y, Mao H, Yang J. Recognition of chiral propranolol by fluorescent aptamerlight switch based on GO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123436. [PMID: 37832446 DOI: 10.1016/j.saa.2023.123436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
In this work, specific aptamers with affinity for S-propranolol were screened by SELEX technology based on the graphene oxide (GO) adsorption platform, and a GO-FAM labeled aptamer-propranolol fluorescent optical switch system was constructed for the recognition of chiral propranolol. It was found that the fluorescence quenching of FAM labeled aptamer could be caused by the adsorption of GO. However, when S-propranolol was introduced, S-propranolol could pull out the aptamer adsorbed by GO, and the fluorescence of the system could be restored. But, R-propranolol could not be realized. Therefore, a simple and sensitive fluorescent optical switch system was established to identify chiral propranolol and perform highly sensitive detection of S-propranolol.
Collapse
Affiliation(s)
- Xuanping Tan
- ChongQing Three Gorges University, Chongqing 404000, China
| | - Yuhui Zhang
- ChongQing Three Gorges University, Chongqing 404000, China
| | - Huaping Mao
- ChongQing Three Gorges University, Chongqing 404000, China
| | - Jidong Yang
- ChongQing Three Gorges University, Chongqing 404000, China.
| |
Collapse
|
2
|
Development of Ultra High-Performance Liquid Chromatography–Tandem Mass Spectrometry Method for Enantiomer Resolution of Thyroxine on a Chiral Crown Ether Derived Chiral Stationary Phase. Chromatographia 2022. [DOI: 10.1007/s10337-022-04219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Peluso P, Chankvetadze B. Recognition in the Domain of Molecular Chirality: From Noncovalent Interactions to Separation of Enantiomers. Chem Rev 2022; 122:13235-13400. [PMID: 35917234 DOI: 10.1021/acs.chemrev.1c00846] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It is not a coincidence that both chirality and noncovalent interactions are ubiquitous in nature and synthetic molecular systems. Noncovalent interactivity between chiral molecules underlies enantioselective recognition as a fundamental phenomenon regulating life and human activities. Thus, noncovalent interactions represent the narrative thread of a fascinating story which goes across several disciplines of medical, chemical, physical, biological, and other natural sciences. This review has been conceived with the awareness that a modern attitude toward molecular chirality and its consequences needs to be founded on multidisciplinary approaches to disclose the molecular basis of essential enantioselective phenomena in the domain of chemical, physical, and life sciences. With the primary aim of discussing this topic in an integrated way, a comprehensive pool of rational and systematic multidisciplinary information is provided, which concerns the fundamentals of chirality, a description of noncovalent interactions, and their implications in enantioselective processes occurring in different contexts. A specific focus is devoted to enantioselection in chromatography and electromigration techniques because of their unique feature as "multistep" processes. A second motivation for writing this review is to make a clear statement about the state of the art, the tools we have at our disposal, and what is still missing to fully understand the mechanisms underlying enantioselective recognition.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB, CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, I-07100 Sassari, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Avenue 3, 0179 Tbilisi, Georgia
| |
Collapse
|
4
|
Recent Advances on Chiral Mobile Phase Additives: A Critical Review. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Nikam S, S. K A. Enantioselective Separation of Amino Acids Using Chiral Polystyrene Microspheres Synthesized by a Post-Polymer Modification Approach. ACS POLYMERS AU 2022; 2:257-265. [PMID: 36855562 PMCID: PMC9955280 DOI: 10.1021/acspolymersau.2c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective separation of a racemic mixture of amino acids was achieved by chiral amino acid-modified polystyrene (PS) that was developed by a post-polymer modification approach. Styrene was polymerized using the reversible addition-fragmentation chain-transfer (RAFT) polymerization technique and further post-polymer modification was applied by Friedel-Crafts acylation reaction with chiral N-phthaloyl-l-leucine acid chloride to obtain the protected PS-l-Leu. The chiral PS (protected PS-l-Leu) was assembled into microspheres using a surfactant and was used for carrying out the enantioselective separation of amino acid racemic mixtures by enantioselective adsorption followed by a simple filtration process. Compared to as-precipitated chiral PS (protected PS-l-Leu) powder, the protected PS-l-Leu microspheres exhibited a better enantioselective separation efficiency (ee %). Furthermore, the protected PS-l-Leu was deprotected to obtain the amine-functionalized deprotected PS-l-Leu chiral PS, which was also assembled into microspheres and used for carrying out enantioselective separation. Deprotected PS-l-Leu-functionalized chiral PS microspheres could achieve up to 81.6 ee % for the enantioselective separation of a racemic mixture of leucine. This is one of the first reports of the synthesis of amino acid-modified chiral PS microspheres and their application to the simple filtration-based enantioselective separation of native amino acids from their racemic mixtures.
Collapse
Affiliation(s)
- Shrikant
B. Nikam
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India
| | - Asha S. K
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India,. Fax: 0091-20-25902615
| |
Collapse
|
6
|
Wu F, Wu X, Xu F, Han J, Tian H, Ding CF. Recognition of Cis-Trans and Chiral Proline and Its Derivatives by Ion Mobility Measurement of Their Complexes with Natamycin and Metal Ion. Anal Chem 2022; 94:3553-3564. [PMID: 35179030 DOI: 10.1021/acs.analchem.1c04545] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discrimination of isomers is an important and valuable feature in many analytical applications, and the identification of chiral isomers and cis-trans isomers is the current research focus. In this work, a simple method for direct, simultaneous recognition of d-/l-proline (P), d-/l-/cis-/trans-4-hydroxyproline (4-HP), and d-/l-/cis-/trans-N-tert-butoxycarbony (N-Boc-4-HP) was investigated by means of trapped ion mobility spectrometry-mass spectrometry (TIMS-MS). The isomers with cis-/trans-/d-/l-configuration can be directly recognized based on their mobility upon reaction with natamycin (Nat) and metal ions through noncovalent interactions. The results indicate that the recognition of the enantiomers has certain specificity, and the structural difference of the enantiomers was increased in a complex with Nat and metal ions. Herein, d-/l-P can be recognized through the ternary complexes [P + Nat + Mg - H]+, [P + 2Nat + Ca - H]+, [P + 2Nat + Mn - H]+, and [P + Nat + Cu - H]+. Similarly, c-4-HPL, c-4-HPD, t-4-HPL, and t-4-HPD can be recognized by [4-HP + Nat + Ca - H]+, [4-HP + 2Nat + Ca - H]+, and [4-HP + Nat + Cu - H]+, while N-Boc-c-4-HPL, N-Boc-c-4-HPD, N-Boc-t-4-HPL, and N-Boc-t-4-HPD were recognized through the enantiomer complexes [N-Boc-4-HP + Nat + Li]+, [N-Boc-4-HP + Nat + 2Na - H]+, [N-Boc-4-HP + Nat + K]+, [N-Boc-4-HP + Nat + Mn - H]+, and [N-Boc-4-HP + Nat + Ba - H]+. Moreover, tandem mass spectrometry (MS/MS) results indicated that different collision energies were obtained for the same fragment ions, which implied that the enantiomer complexes that contributed to their mobility separation shared identical interaction mode but had different gas-phase rigid geometries. Furthermore, the relative quantification for the enantiomers was performed, and the results were supported by a satisfactory coefficient (R2 > 0.99). The developed method can provide a promising and powerful strategy for the separation of chiral proline and its d-/l-/cis-/trans derivatives, bearing the advantages of higher speed, better accuracy, high selectivity, and no need for chemical derivatization and chromatographic separation.
Collapse
Affiliation(s)
- Fangling Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Xishi Wu
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jiaoru Han
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Hui Tian
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
7
|
Berkecz R, Németi G, Péter A, Ilisz I. Liquid Chromatographic Enantioseparations Utilizing Chiral Stationary Phases Based on Crown Ethers and Cyclofructans. Molecules 2021; 26:4648. [PMID: 34361801 PMCID: PMC8348247 DOI: 10.3390/molecules26154648] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Natural compounds can exist in different forms, where molecules possessing chirality play an essential role in living organisms. Currently, one of the most important tasks of modern analytical chemistry is the enantioseparation of chiral compounds, in particular, the enantiomers of compounds having biological and/or pharmaceutical activity. Whether the task is to analyze environmental or food samples or to develop an assay for drug control, well-reproducible, highly sensitive, stereoselective, and robust methods are required. High-performance liquid chromatography best meets these conditions. Nevertheless, in many cases, gas chromatography, supercritical fluid chromatography, or capillary electrophoresis can also offer a suitable solution. Amino acids, proteins, cyclodextrins, derivatized polysaccharides, macrocyclic glycopeptides, and ion exchangers can serve as efficient selectors in liquid chromatography, and they are quite frequently applied and reviewed. Crown ethers and cyclofructans possessing similar structural characteristics and selectivity in the enantiodiscrimination of different amine compounds are discussed less frequently. This review collects information on enantioseparations achieved recently with the use of chiral stationary phases based on crown ethers or cyclofructans, focusing on liquid chromatographic applications.
Collapse
Affiliation(s)
| | | | | | - István Ilisz
- Interdisciplinary Excellence Centre, Institute of Pharmaceutical Analysis, University of Szeged, Somogyi u. 4, H-6720 Szeged, Hungary; (R.B.); (G.N.); (A.P.)
| |
Collapse
|
8
|
Sui X, Guan J, Li X, Gu L, Yan F, Shi S, Zhang D. Preparation of a polydopamine/β-cyclodextrin coated open tubular capillary electrochromatography column and application for enantioseparation of five proton pump inhibitors. J Sep Sci 2021; 44:3295-3304. [PMID: 34185396 DOI: 10.1002/jssc.202100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
An open tubular capillary electrochromatography column was prepared by immobilizing β-cyclodextrin on the inner wall of pretreated capillary via noncovalent adsorption of polydopamine. The resulting coating layer on the capillary was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Electroosmotic flow was studied to evaluate the variation of the immobilized columns. The prepared columns showed good chiral separation performance toward five proton pump inhibitors including lansoprazole, pantoprazole, tenatoprazole, rabeprazole, and omeprazole. The influences of β-cyclodextrin concentration, coating time, buffer pH, buffer concentration, and applied voltage on separation were investigated. In the optimum conditions, the enantiomers of five analytes were fully resolved within 15 min with high resolutions of 4.57 to 8.13. The method was extensively validated in terms of accuracy, precision, and linearity and proved to be robust. The relative standard deviation values for migration times and peak areas of the analytes representing intraday and interday were less than 1.9 and 3.6%, respectively. Further, the polydopamine/β-cyclodextrin coated capillary column could be successively used over 100 runs without showing significant decrease in the separation efficiency.
Collapse
Affiliation(s)
- Xiuyu Sui
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Jin Guan
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Xiaoyu Li
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Lei Gu
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Feng Yan
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Shuang Shi
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Dongxiang Zhang
- School of Chemical Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| |
Collapse
|
9
|
Zhao Y, Zhu X, Jiang W, Liu H, Wang J, Sun B. Natural and Artificial Chiral-Based Systems for Separation Applications. Crit Rev Anal Chem 2021; 53:27-45. [PMID: 34152894 DOI: 10.1080/10408347.2021.1932408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chiral separation has attracted much attention for basic research and industrial applications in analytical chemistry. Generally, chiral separations use natural or artificial chiral-based materials as adsorbents. To improve the precision and efficiency of chiral separation, focus has shifted from natural and synthetic adsorbents to binary combinations of materials. This review specifically summarizes the significant advancements made in natural and artificial chiral adsorbents as promising candidates for diverse drug and biomolecule separation applications as well as the remaining drawbacks and challenges for research on chiral separations. The mechanisms of chiral-based recognition and separation and history and development of natural and artificial chiral-based systems are the focus of this review. Future directions in natural and artificial chiral-based systems for practical separations and other applications are also presented.
Collapse
Affiliation(s)
- Yuan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Xuecheng Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Wei Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China.,School of Food and Health, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
10
|
Lee Y, Bang E, Lee W, Na YC. Simultaneous enantioselective separation method for thyroid hormones using liquid chromatography-tandem mass spectrometry and its applications. J Pharm Biomed Anal 2021; 196:113904. [PMID: 33516122 DOI: 10.1016/j.jpba.2021.113904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 01/25/2023]
Abstract
An analytical method for the simultaneous determination of chiral thyroxine and the related iodinated chiral compounds using LC-MS/MS is introduced in this study. D-Thyroid hormones (THs), which are not commercially available, were produced through the racemization reaction of the L-THs in acetic acid solution containing salicylaldehyde. The solution containing D- and L-THs after the reaction was used for optimizing the chiral separation. The D- and L-THs were well separated enantiomerically under isocratic conditions in 70 % acetonitrile containing 0.1 % formic acid on a CROWNPAK® CR-I (+) column, but some peaks, such as those of diiodo-D-tyrosine (D-DIT)/monoiodo-L-tyrosine, diiodo-D-thyronine/diiodo-L-tyrosine and D-thyroxine/triiodo-L-thyronine, overlapped chromatographically, causing misinterpretation in impurity analysis. This was overcome by using the gradient condition providing the best chiral selectivity (α) and resolution (Rs) ranging from 1.14 to 1.37 and from 2.39 to 4.52, respectively. The linearity was above 0.999 and the detection limits ranged from 8.2 to 57.7 ng/mL by the separation method. This method was applied to identify and quantify chiral impurities in authentic standards and pharmaceuticals. As a result, D-enantiomers corresponding to the L-THs standards as well as L-DIT were commonly observed as impurities. In the stability test of DL-thyroxine under acidic conditions for identifying the distribution of chiral products, it was observed that the formation of DIT by hydrolysis increased over time. Additional products formed through esterification, including thyroxine methyl ester and diiodo-tyrosine methyl ester, were newly separated and identified using a C18 column.
Collapse
Affiliation(s)
- Yunhee Lee
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, Republic of Korea
| | - Eunjung Bang
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, Republic of Korea
| | - Wonjae Lee
- College of Pharmacy, Chosun University, 309 Pilmun-dong, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Yun-Cheol Na
- Western Seoul Center, Korea Basic Science Institute, 150 Bugahyeon-ro, Seodaemun-gu, Seoul, 03759, Republic of Korea.
| |
Collapse
|
11
|
Yang Y, Wang Y, Bao Z, Yang Q, Zhang Z, Ren Q. Progress in the Enantioseparation of β-Blockers by Chromatographic Methods. Molecules 2021; 26:molecules26020468. [PMID: 33477385 PMCID: PMC7830546 DOI: 10.3390/molecules26020468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/31/2022] Open
Abstract
β-adrenergic antagonists (β-blockers) with at least one chiral center are an exceedingly important class of drugs used mostly to treat cardiovascular diseases. At least 70 β-blockers have been investigated in history. However, only a few β-blockers, e.g., timolol, are clinically marketed as an optically pure enantiomer. Therefore, the separation of racemates of β-blockers is essential both in the laboratory and industry. Many approaches have been explored to obtain the single enantiomeric β-blocker, including high performance liquid chromatography, supercritical fluid chromatography and simulated moving bed chromatography. In this article, a review is presented on different chromatographic methods applied for the enantioseparation of β-blockers, covering high performance liquid chromatography (HPLC), supercritical fluid chromatography (SFC) and simulated moving bed chromatography (SMB).
Collapse
Affiliation(s)
- Yiwen Yang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence:
| | - Yehui Wang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
| | - Zongbi Bao
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiwei Yang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Zhiguo Zhang
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qilong Ren
- Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (Y.W.); (Z.B.); (Q.Y.); (Z.Z.); (Q.R.)
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
12
|
Fan J, Kotov NA. Chiral Nanoceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906738. [PMID: 32500963 DOI: 10.1002/adma.201906738] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 05/27/2023]
Abstract
The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever-expanding toolbox of nanoscale engineering and self-organization provides a chirality-based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.
Collapse
Affiliation(s)
- Jinchen Fan
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nicholas A Kotov
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Sobańska AW. Emerging or Underestimated Silica-Based Stationary Phases in Liquid Chromatography. Crit Rev Anal Chem 2020; 51:631-655. [PMID: 32482079 DOI: 10.1080/10408347.2020.1760782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several newly synthesized or forgotten silica-based stationary phases proposed for liquid chromatography are described, including non-endcapped, short-chain alkyl phases; hydrophilic and polar-endcapped stationary phases; polar-embedded alkyl phases; long-chain alkyl phases. Stationary phases with aromatic, cyanopropyl, diol and aminopropyl functionalities are also reviewed. Stationary phases of particular interest are biomolecular materials - based on immobilized cholesterol, aminoacids, peptides, proteins or lipoproteins. Packing materials involving macrocyclic chemistry (crown ethers; calixarenes; aza-macrocycles; oligo-and polysaccharides including these of marine origin - chitin- or chitosan-based; macrocyclic antibiotics) are discussed. Since many stationary phases developed for one type of applications (e.g. chiral separation) have been found useful in solving other analytical problems (e.g. drug's plasma protein binding ability), it seemed reasonable to discuss particular chemistries behind the stationary phases presented in this review rather than specific types of interactions or chromatographic modes.
Collapse
Affiliation(s)
- Anna W Sobańska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
15
|
Abstract
Stereospecific recognition of chiral molecules plays an important role in nature as the basis of the interaction of chiral bioactive compounds with the chiral target structures. In separation sciences such as chromatographic and capillary electromigration techniques, interactions between chiral analytes and chiral selectors, i.e., the formation of transient diastereomeric complexes in thermodynamic equilibria, are the basis for chiral separations. Due to the large structural variety of chiral selectors, different structural features contribute to the overall chiral recognition process. This introductory chapter briefly summarizes the present understanding of the structural enantioselective recognition processes for various types of chiral selectors.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical Chemistry, University of Jena, Jena, Germany.
| |
Collapse
|
16
|
Khasiyatullina NR, Litvinov IA, Mironov VF. Reactions of Tertiary Phosphines with 3-Halogen-1,2-naphthoquinones as a New Synthetic Approach to 3,3′,4,4′-Tetrahydroxy-1,1′-binaphthyls. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218090074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|