1
|
Di KN, Ha PTM, Nguyen NP, Nguyen NY, Truong TC, Nguyen TTV, Truong QK, Nguyen MQ, Pham DT. Enhanced Anti-inflammatory Effects of Diclofenac Delivered Orally via Polyvinylpyrrolidone K30/Silk Fibroin Nanoparticles in a Murine Model of Carrageenan-Induced Paw Edema. ChemMedChem 2024:e202400760. [PMID: 39512215 DOI: 10.1002/cmdc.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
Diclofenac has a relatively low oral bioavailability (50-60 %) and is quickly metabolized with a half-life of less than 1 h. Therefore, the oral therapeutic effect of diclofenac is not optimal. This research developed polyvinylpyrrolidone K30-functionalized silk fibroin nanoparticles as an effective delivery system for diclofenac (FNPs-PVP-DC). The FNPs-DC and FNPs-PVP-DC were formulated by two methods of adsorption and solvent exchange. Depending on the formulation factors, the obtained particles exhibited different properties of nano-scale sizes (400-800 nm), narrow size distribution, negatively charged surfaces (-17 to -19 mV), high PVP K30 incorporation (23 %-50 %), pHpzc of ~6.6, and appropriate chemical interactions. Interestingly, particles formulated by the adsorption method showed low drug encapsulation efficiencies of <15 %, whereas the solvent exchange method yielded moderate results of ~40 %. The FNPs-DC possessed aggregated patterns, while the FNPs-PVP-DC were more uniformly distributed. All formulations limited diclofenac release (<20 %) under gastric conditions and sustained its release in the intestinal environment. In in-vivo carrageenan-induced paw edema mice model, the FNPs-PVP-DC demonstrated a 20-30 % higher anti-inflammatory effect and a faster onset of action (within 1 h) compared to pure diclofenac at the same dose (5 mg/kg). These findings suggest that FNPs-PVP-DC have promising potential as novel oral anti-inflammatory products.
Collapse
Affiliation(s)
- Khanh Nguyen Di
- Technology, Medicine and Social Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Vietnam
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Vietnam
| | - Phuong T M Ha
- Department of Chemistry, Faculty of Pharmacy and Nursing, Tay Do University, 68 Tran Chien Street, Can Tho, 900000, Vietnam
| | - Ngoc Phuc Nguyen
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Ngoc Yen Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Tri Cuong Truong
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Thi Tuong Van Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| | - Quoc-Ky Truong
- Faculty of Pharmacy, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700000, Vietnam
| | - Manh Quan Nguyen
- Department of Analytical Chemistry-Drug Quality Control, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu Street, Can Tho, 900000, Vietnam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Vietnam
| |
Collapse
|
2
|
Thi Phuong Thao N, Nguyen NY, Co VB, Thanh LHV, Nguyen MQ, Pan-On S, Pham DT. Formulations of poly(vinyl alcohol) functionalized silk fibroin nanoparticles for the oral delivery of zwitterionic ciprofloxacin. PLoS One 2024; 19:e0306140. [PMID: 39088490 PMCID: PMC11293643 DOI: 10.1371/journal.pone.0306140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 08/03/2024] Open
Abstract
Fibroin nanoparticles (FNP) have been employed in numerous biomedical applications. However, limited research has focused on the oral delivery of FNP and in-depth molecular interactions between the encapsulated drug and FNP. Therefore, this work developed the FNP, functionalized with poly(vinyl alcohol) (PVA), to orally deliver the zwitterionic ciprofloxacin, focused on the molecular interactions. The particles were formulated using both desolvation (the drug precipitated during the particles formulation) and adsorption (the drug adsorbed on the particles surfaces) methods. The optimal formula possessed a size of ~630 nm with narrow size distribution (measured by DLS method), spherical shape (determined by SEM), and moderate drug loading (confirmed by FT-IR, XRD, and DSC techniques) of ~50% for the desolvation method and ~43% for the adsorption method. More than 80% of the drug molecules resided on the particle surfaces, mainly via electrostatic forces with fibroin. The drug was physically adsorbed onto FNP, which followed Langmuir model and pseudo second-order kinetics. In the in-vitro simulated gastric condition at pH 1.2, the ciprofloxacin bound strongly with FNP via electrostatic forces, thus hindering the drug release (< 40%). Contrastingly, in the simulated intestinal condition at pH 6.8, the particles could control the drug release rates dependent on the PVA amount, with up to ~100% drug release. Lastly, the particles possessed adequate antibacterial activities on Bacillus subtilis, Escherichia coli, and Salmonella enterica, with MIC of 128, 8, and 32 μg/mL, respectively. In summary, the FNP and PVA functionalized FNP could be a potential oral delivery system for zwitterionic drugs.
Collapse
Affiliation(s)
| | - Ngoc Yen Nguyen
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Van Ben Co
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| | - Luong Huynh Vu Thanh
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho, Vietnam
| | - Manh Quan Nguyen
- Department of Analytical Chemistry-Drug Quality Control, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Suchiwa Pan-On
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, Vietnam
| |
Collapse
|
3
|
Nguyen NY, Nguyen TNP, Huyen NN, Tran VD, Quyen TTB, Luong HVT, Pham DT. Onto the differences in formulating micro-/nanoparticulate drug delivery system from Thai silk and Vietnamese silk: A critical comparison. Heliyon 2023; 9:e16966. [PMID: 37484260 PMCID: PMC10361021 DOI: 10.1016/j.heliyon.2023.e16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023] Open
Abstract
Silk fibroin is a natural polymer with physicochemical properties heavily dependent on its silkworm sources and cultivation conditions. Hence, this study critically compared the characteristics and capacity to generate micro-/nanoparticles of fibroin extracted from the Thai silk and Vietnamese silk. Both Thai fibroin (SFT) and Vietnamese fibroin (SFV) were extracted and fabricated into micro-/nanoparticles using the same methods of desalination and condensation, respectively. Firstly, the amino acid compositions of SFT and SFV were determined and found to be similar, suggesting that the different cultivation conditions did not alter the fibroin chemical contents. Secondly, utilizing various analytical techniques, the SFT structure revealed less heavy chains, more light chains and P-25 glycoproteins, and lower crystallinity than those of SFV. Accordingly, compared to the particles formed by SFT, the SFV-based particles were significantly bigger (∼1700 nm vs. ∼150 nm), and possessed less drug (Amphotericin B) entrapment efficiency (64.3 ± 4.4% vs. 79.3 ± 5.1%), higher hemototoxicity, and less biostability in the blood. Conclusively, these differences add more insights for the appropriate applications of each fibroin kind to best promote its qualities and effectiveness.
Collapse
Affiliation(s)
- Ngoc Yen Nguyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam
| | | | - Nguyen Ngoc Huyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Viet Nam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho 900000, Viet Nam
| | - Tran Thi Bich Quyen
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam
| | - Huynh Vu Thanh Luong
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| |
Collapse
|
4
|
Huynh DTM, Hai HT, Hau NM, Lan HK, Vinh TP, Tran VD, Pham DT. Preparations and characterizations of effervescent granules containing azithromycin solid dispersion for children and elder: Solubility enhancement, taste-masking, and digestive acidic protection. Heliyon 2023; 9:e16592. [PMID: 37292293 PMCID: PMC10245243 DOI: 10.1016/j.heliyon.2023.e16592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
Azithromycin, a macrolide antibiotics, is one of the frequently used drugs in the children and elder. However, due to these population difficulty in swallowing and inefficient absorption, and azithromycin inherent poor solubility, bitter taste, and instability in the stomach acidic condition, it is a challenge to reach high oral bioavailability of this drug. To overcome these issues, we developed and characterized the effervescent granules containing azithromycin solid dispersion. Firstly, the solid dispersion was prepared, employing both wet grinding and solvent evaporation methods, with different types/amounts of polymers. The optimal solid dispersion with β-cyclodextrin at a drug:polymer ratio of 1:2 (w/w), prepared by the solvent evaporation method, significantly enhanced the azithromycin solubility 4-fold compared to the free drug, improved its bitterness from "bitter" to "normal", possessed intermolecular bonding between the drug and polymer, and transformed the azithromycin molecules from crystalline to amorphous state. Secondly, the effervescent granules incorporating the solid dispersion were formulated with varied excipients of sweeteners, gas-generators, pH modulators, and glidants/lubricants. The optimal formula satisfied all the properties stated in the Vietnamese Pharmacopoeia. In summary, the final effervescent granules product could be further investigated in in-vivo and in clinical settings to become a potential azithromycin delivery system with high bioavailability for the children and elder.
Collapse
Affiliation(s)
- Duyen Thi My Huynh
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Huynh Thien Hai
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Nguyen Minh Hau
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Huynh Kim Lan
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Truong Phu Vinh
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, Can Tho, 900000, Viet Nam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho, 900000, Viet Nam
| |
Collapse
|
5
|
Tuyen NTL, Nghiem LQ, Tuan ND, Le PH. Development of a Scalable Process of Film-Coated bi-Layer Tablet Containing Sustained-Release Metoprolol Succinate and Immediate-Release Amlodipine Besylate. Pharmaceutics 2021; 13:pharmaceutics13111797. [PMID: 34834212 PMCID: PMC8618854 DOI: 10.3390/pharmaceutics13111797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new drugs that combine active ingredients for the treatment hypertension is critically essential owing to its offering advantages for both patients and manufacturers. In this study, for the first time, detailed development of a scalable process of film-coated bi-layer tablets containing sustained-release metoprolol succinate and immediate-release amlodipine besylate in a batch size of 10,000 tablets is reported. The processing parameters of the manufacturing process during dry mixing-, drying-, dry mixing- completion stages were systematically investigated, and the evaluation of the film-coated bi-layer tablet properties was well established. The optimal preparation conditions for metoprolol succinate layer were 6 min- dry mixing with a high-speed mixer (120 rpm and 1400 rpm), 30-min drying with a fluid bed dryer, and 5-min- mixing completion at 25 rpm. For the preparation of amlodipine besylate layer, the optimal dry-mixing time using a cube mixer (25 rpm) was found to be 5 min. The average weight of metoprolol succinate layers and bi-layer tablets were controlled at 240-260 mg and 384-416 mg, respectively. Shewhart R chart and X¯ charts of all three sampling lots were satisfactory, confirming that the present scalable process was stable and successful. This study confirms that the manufacturing process is reproducible, robust; and it yields a consistent product that meets specifications.
Collapse
Affiliation(s)
- Nguyen Thi Linh Tuyen
- Faculty of Pharmacy, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu, Can Tho City 94000, Vietnam
- Correspondence: ; Tel.: +84-91-807-1943
| | - Le Quan Nghiem
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City 760000, Vietnam; (L.Q.N.); (N.D.T.)
| | - Nguyen Duc Tuan
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, 41 Dinh Tien Hoang Street, District 1, Ho Chi Minh City 760000, Vietnam; (L.Q.N.); (N.D.T.)
| | - Phuoc Huu Le
- Department of Physics and Biophysics, Faculty of Basic Sciences, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu, Can Tho City 94000, Vietnam;
| |
Collapse
|