1
|
Liu D, Smagghe G, Liu TX. Interactions between Entomopathogenic Fungi and Insects and Prospects with Glycans. J Fungi (Basel) 2023; 9:jof9050575. [PMID: 37233286 DOI: 10.3390/jof9050575] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Concerns regarding the ecological and health risks posed by synthetic insecticides have instigated the exploration of alternative methods for controlling insects, such as entomopathogenic fungi (EPF) as biocontrol agents. Therefore, this review discusses their use as a potential alternative to chemical insecticides and especially focuses on the two major ones, Beauveria bassiana and Metarhizium anisopliae, as examples. First, this review exemplifies how B. bassiana- and M. anisopliae-based biopesticides are used in the world. Then, we discuss the mechanism of action by which EPF interacts with insects, focusing on the penetration of the cuticle and the subsequent death of the host. The interactions between EPF and the insect microbiome, as well as the enhancement of the insect immune response, are also summarized. Finally, this review presents recent research that N-glycans may play a role in eliciting an immune response in insects, resulting in the increased expression of immune-related genes and smaller peritrophic matrix pores, reducing insect midgut permeability. Overall, this paper provides an overview of the EPF in insect control and highlights the latest developments relating to the interaction between fungi and insect immunity.
Collapse
Affiliation(s)
- Dongdong Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Guy Smagghe
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang 550025, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang 550025, China
| |
Collapse
|
2
|
Ayilara MS, Adeleke BS, Akinola SA, Fayose CA, Adeyemi UT, Gbadegesin LA, Omole RK, Johnson RM, Uthman QO, Babalola OO. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Front Microbiol 2023; 14:1040901. [PMID: 36876068 PMCID: PMC9978502 DOI: 10.3389/fmicb.2023.1040901] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/17/2023] [Indexed: 02/18/2023] Open
Abstract
Over the years, synthetic pesticides like herbicides, algicides, miticides, bactericides, fumigants, termiticides, repellents, insecticides, molluscicides, nematicides, and pheromones have been used to improve crop yield. When pesticides are used, the over-application and excess discharge into water bodies during rainfall often lead to death of fish and other aquatic life. Even when the fishes still live, their consumption by humans may lead to the biomagnification of chemicals in the body system and can cause deadly diseases, such as cancer, kidney diseases, diabetes, liver dysfunction, eczema, neurological destruction, cardiovascular diseases, and so on. Equally, synthetic pesticides harm the soil texture, soil microbes, animals, and plants. The dangers associated with the use of synthetic pesticides have necessitated the need for alternative use of organic pesticides (biopesticides), which are cheaper, environment friendly, and sustainable. Biopesticides can be sourced from microbes (e.g., metabolites), plants (e.g., from their exudates, essential oil, and extracts from bark, root, and leaves), and nanoparticles of biological origin (e.g., silver and gold nanoparticles). Unlike synthetic pesticides, microbial pesticides are specific in action, can be easily sourced without the need for expensive chemicals, and are environmentally sustainable without residual effects. Phytopesticides have myriad of phytochemical compounds that make them exhibit various mechanisms of action, likewise, they are not associated with the release of greenhouse gases and are of lesser risks to human health compared to the available synthetic pesticides. Nanobiopesticides have higher pesticidal activity, targeted or controlled release with top-notch biocompatibility and biodegradability. In this review, we examined the different types of pesticides, the merits, and demerits of synthetic pesticides and biopesticides, but more importantly, we x-rayed appropriate and sustainable approaches to improve the acceptability and commercial usage of microbial pesticides, phytopesticides, and nanobiopesticides for plant nutrition, crop protection/yield, animal/human health promotion, and their possible incorporation into the integrated pest management system.
Collapse
Affiliation(s)
- Modupe S. Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Biological Sciences, Kings University, Ode-Omu, Nigeria
| | - Bartholomew S. Adeleke
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Biological Sciences, Microbiology Unit, School of Science, Olusegun Agagu University of Science and Technology, Okitipupa, Nigeria
| | - Saheed A. Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Microbiology and Parasitology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Butare, Rwanda
| | - Chris A. Fayose
- Department of Agricultural Technology, Ekiti State Polytechnic, Isan-Ekiti, Nigeria
| | - Uswat T. Adeyemi
- Department of Agricultural Economics and Farm Management, Faculty of Agriculture, University of Ilorin, Ilorin, Nigeria
| | - Lanre A. Gbadegesin
- Institute of Mountain Hazards and Environment, University of Chinese Academy of Sciences, Chengdu, China
| | - Richard K. Omole
- Department of Microbiology, Obafemi Awolowo University, Ile-Ife, Nigeria
- Microbiology Unit, Department of Applied Sciences, Osun State College of Technology, Esa-Oke, Nigeria
| | | | - Qudus O. Uthman
- Soil, Water and Ecosystem Sciences, University of Florida, Gainesville, FL, United States
| | - Olubukola O. Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
3
|
Panda S, Zhou K. Engineering microbes to overproduce natural products as agrochemicals. Synth Syst Biotechnol 2022; 8:79-85. [PMID: 36514486 PMCID: PMC9731846 DOI: 10.1016/j.synbio.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/12/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
Current agricultural practices heavily rely on the excessive application of synthetic pesticides and fertilizers to meet the food demands of the increasing global population. This practice has several drawbacks including its negative impact on the environment and human health. Recently, the use of natural products has gained interest as alternatives to these synthetic agrochemicals due to their selective working mechanisms and biodegradability. In order to efficiently produce these natural agrochemicals, engineering microorganisms is emerging as an increasingly viable approach, and it is anticipated that it will have a significant market share in the near future. This approach manipulates the metabolism of microbes to manufacture the desired natural compounds from low-cost starting materials. This review discusses recent examples of this approach. The produced natural products can serve as biopesticides or plant growth regulators for the sustainable improvement of plant growth and disease control. The challenges in further developing these strategies are also discussed.
Collapse
|
4
|
An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. PLANTS 2021; 10:plants10061185. [PMID: 34200860 PMCID: PMC8230470 DOI: 10.3390/plants10061185] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/29/2022]
Abstract
Biopesticides are natural, biologically occurring compounds that are used to control various agricultural pests infesting plants in forests, gardens, farmlands, etc. There are different types of biopesticides that have been developed from various sources. This paper underscores the utility of biocontrol agents composed of microorganisms including bacteria, cyanobacteria, and microalgae, plant-based compounds, and recently applied RNAi-based technology. These techniques are described and suggestions are made for their application in modern agricultural practices for managing crop yield losses due to pest infestation. Biopesticides have several advantages over their chemical counterparts and are expected to occupy a large share of the market in the coming period.
Collapse
|
6
|
Compatibility of Isaria fumosorosea (Hypocreales: Cordycipitaceae) Blastospores with Agricultural Chemicals Used for Management of the Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). INSECTS 2013; 4:694-711. [PMID: 26462531 PMCID: PMC4553511 DOI: 10.3390/insects4040694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/17/2013] [Accepted: 11/01/2013] [Indexed: 11/24/2022]
Abstract
Biorational insecticides are being increasingly emphasized for inclusion in integrated pest management programs for invasive insects. The entomopathogenic fungus, Isaria fumosorosea, can be used to help manage the Asian citrus psyllid with minimal impact on beneficial arthropods, but its effectiveness may be compromised by agrochemicals used to control concurrent arthropod pests and diseases. We evaluated the compatibility of I. fumosorosea blastospores with a range of spray oils and copper-based fungicides registered for use in citrus groves. Results of laboratory and greenhouse tests showed a range of responses of the fungus to the different materials, including compatibility and incompatibility. Overall, I. fumosorosea growth in vitro was reduced least by petroleum-based materials and most by botanical oils and borax, and some of the copper-based fungicides, suggesting that tank mixing of I. fumosorosea with these latter products should be avoided. However, equivalent negative effects of test materials on fungal pathogenicity were not always observed in tests with adult psyllids. We hypothesize that some oils enhanced adherence of blastospores to the insect cuticle, overcoming negative impacts on germination. Our data show that care should be taken in selecting appropriate agrochemicals for tank-mixing with commercial formulations of entomopathogenic fungi for management of citrus pests. The prospects of using I. fumosorosea for managing the invasive Asian citrus psyllid and other citrus pests are discussed.
Collapse
|