1
|
Zheng C, Rangsinth P, Shiu PHT, Wang W, Li R, Li J, Kwan YW, Leung GPH. A Review on the Sources, Structures, and Pharmacological Activities of Lucidenic Acids. Molecules 2023; 28:molecules28041756. [PMID: 36838743 PMCID: PMC9962123 DOI: 10.3390/molecules28041756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Ganoderma lucidum has long been used as a multi-purpose plant and functional food. The pharmacological properties of G. lucidum are primarily attributed to its polysaccharides and triterpenoids. Ganoderic and lucidenic acids are the two major triterpenoids groups in G. lucidum. Despite the discovery of 22 types of lucidenic acids, research on lucidenic acids is significantly less extensive compared to that on ganoderic acid. To the best of our knowledge, for the first time, in this review, we aimed to summarize the sources, contents, chemical structures, and pharmacological effects, including anti-cancer, anti-inflammatory, antioxidant, anti-viral, neuroprotective, anti-hyperlipidemic, anti-hypercholesterolemic, and anti-diabetic properties, of lucidenic acids. Studies on lucidenic acids are still preliminary and have several limitations. Therefore, more in-depth studies with optimal designs are essential for the development of lucidenic acids as medicines, functional foods, and nutraceuticals.
Collapse
Affiliation(s)
- Chengwen Zheng
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Polly H. T. Shiu
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Wang
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Renkai Li
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - George P. H. Leung
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
2
|
Chukwuemeka PO, Umar HI, Iwaloye O, Oretade OM, Olowosoke CB, Elabiyi MO, Igbe FO, Oretade OJ, Eigbe JO, Adeojo FJ. Targeting p53-MDM2 interactions to identify small molecule inhibitors for cancer therapy: beyond "Failure to rescue". J Biomol Struct Dyn 2021; 40:9158-9176. [PMID: 33988074 DOI: 10.1080/07391102.2021.1924267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At present, disrupting p53-MDM2 interactions through small molecule ligands is a promising approach to safe treatment and management of human cancer. Tumor cells unlike the normal cells, are rapidly evolving affecting the efficacy of many approved anti-cancer agents due to drug resistance. Therefore, identifying a potential anticancer compound is crucial. Pharmacophore based virtual screening, followed by molecular docking, ADMET evaluation, and molecular dynamics studies against MDM2 protein was investigated to identify potential ligands that may act as inhibitors. The model (AHRR_1) with survival score (4.176) was selected among the top ranked generated Pharmacophore hypothesis. Validation of the model hypothesis by an external dataset of actives and inactive compounds produced significant validation attributes including; AUC = 0.85, BEDROC = 0.56 at α = 20.0, RIE = 8.18, AUAC = 0.88, and EF of 6.2 at the top 2% of the dataset. The model was use for screening the ZINC database, and the top 1375 hits satisfying the model hypothesis were subjected to molecular docking studies to understand the molecular and structural basis of selectivity of compounds for MDM2 protein. A sub-set of 25 compounds with binding energy lower than the reference inhibitors were evaluated for pharmacokinetic properties. Four compounds (ZINC02639178, ZINC06752762, ZINC38933175, and ZINC77969611) showed the most desired pharmacokinetic profile. Lastly, investigation of the dynamic behaviour of leads-protein complexes through MD simulation showed similar RMSD, RMSF, and H-bond occupancy profile compared to a reference inhibitor, suggesting stability throughout the simulation time. However, ZINC02639178 was found to satisfy the molecular enumeration the most compared to the other three leads. It may emerge as potential treatment option after extensive experimental studies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prosper Obed Chukwuemeka
- Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Haruna Isiyaku Umar
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Opeyemi Iwaloye
- Bioinformatics and Molecular biology unit, Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Oluwaseyi Matthew Oretade
- Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | | | - Michael Omoniyi Elabiyi
- Department of Microbiology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Festus Omotere Igbe
- Department of Biochemistry, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| | - Oyeyemi Janet Oretade
- Department of Physiology, College of Health Science (CHS), Osun State University, Osogbo, Nigeria
| | - Joy Oseme Eigbe
- Department of Biomedical Technology, School of Health and Health Technology (SHHT), Federal University of Technology Akure, Akure, Nigeria
| | - Funmilayo Janet Adeojo
- Department of Biotechnology, School of Sciences (SOS), Federal University of Technology Akure, Akure, Nigeria
| |
Collapse
|
3
|
Paul M, Kumar Panda M, Thatoi H. Developing Hispolon-based novel anticancer therapeutics against human (NF-κβ) using in silico approach of modelling, docking and protein dynamics. J Biomol Struct Dyn 2018; 37:3947-3967. [PMID: 30295165 DOI: 10.1080/07391102.2018.1532321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hispolon is a polyphenolic compound derived from black hoof mushroom (Phellinus linteus) or shaggy bracket mushroom (Inonotus hispidus) which induces the inhibition of cancer-promoting nuclear factor-kappa beta (NF-κβ) complex. To develop more potent lead molecules with enhanced anticancer efficiency, the mechanism of hispolon-mediated nuclear factor-κβ inhibition has been investigated by molecular modelling and docking. Ten derivatives of hispolon (DRG1-10) have been developed by pharmacophore-based design with a view to enhance the anticancer efficacy. Hispolon and its derivatives were further screened for different pharmacological parameters like binding free energy, drug likeliness, absorption-digestion-metabolism-excretion (ADME), permeability, mutagenicity, toxicity and inhibitory concentration 50 (IC50) to find a potent lead molecule. Based on pharmacological validation, comparative molecular dynamics (MD) simulations have been performed for three lead molecules: Hispolon, DRG2 and DRG7 complexed with human NF-κβ up to 50 ns. By analysing different factors like root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA) and principal component analysis (PCA), Gibb's free energy plots DRG2 have more binding efficiency compared to hispolon and DRG7. In RMSD plot, hispolon-bound NF-κβ has the most deviation within a range between 0.125 and 0.45 nm, and DRG2-bound complex showed the range between 0.125 and 0.25 nm. The residues of NF-κβ responsible for hydrophobic interactions with ligand, e.g. Met469, Leu522 and Cys533, have the lowest fluctuation values in DRG2-bound complex. The average Rg fluctuation for DRG2-bound NF-κβ has been recorded under 2.025 nm for most of the simulation time which is much less compared to hispolon and DRG7. Gibb's free energy plots also define the highest stability of DRG2-bound NF-κβ. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manish Paul
- a Department of Biotechnology, North Orissa University , Baripada , Odisha , India
| | | | - Hrudayanath Thatoi
- a Department of Biotechnology, North Orissa University , Baripada , Odisha , India
| |
Collapse
|