Salman OH, Taha Z, Alsabah MQ, Hussein YS, Mohammed AS, Aal-Nouman M. A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: Coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work.
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021;
209:106357. [PMID:
34438223 DOI:
10.1016/j.cmpb.2021.106357]
[Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND
With the remarkable increasing in the numbers of patients, the triaging and prioritizing patients into multi-emergency level is required to accommodate all the patients, save more lives, and manage the medical resources effectively. Triaging and prioritizing patients becomes particularly challenging especially for the patients who are far from hospital and use telemedicine system. To this end, the researchers exploiting the useful tool of machine learning to address this challenge. Hence, carrying out an intensive investigation and in-depth study in the field of using machine learning in E-triage and patient priority are essential and required.
OBJECTIVES
This research aims to (1) provide a literature review and an in-depth study on the roles of machine learning in the fields of electronic emergency triage (E-triage) and prioritize patients for fast healthcare services in telemedicine applications. (2) highlight the effectiveness of machine learning methods in terms of algorithms, medical input data, output results, and machine learning goals in remote healthcare telemedicine systems. (3) present the relationship between machine learning goals and the electronic triage processes specifically on the: triage levels, medical features for input, outcome results as outputs, and the relevant diseases. (4), the outcomes of our analyses are subjected to organize and propose a cross-over taxonomy between machine learning algorithms and telemedicine structure. (5) present lists of motivations, open research challenges and recommendations for future intelligent work for both academic and industrial sectors in telemedicine and remote healthcare applications.
METHODS
An intensive research is carried out by reviewing all articles related to the field of E-triage and remote priority systems that utilise machine learning algorithms and sensors. We have searched all related keywords to investigate the databases of Science Direct, IEEE Xplore, Web of Science, PubMed, and Medline for the articles, which have been published from January 2012 up to date.
RESULTS
A new crossover matching between machine learning methods and telemedicine taxonomy is proposed. The crossover-taxonomy is developed in this study to identify the relationship between machine learning algorithm and the equivalent telemedicine categories whereas the machine learning algorithm has been utilized. The impact of utilizing machine learning is composed in proposing the telemedicine architecture based on synchronous (real-time/ online) and asynchronous (store-and-forward / offline) structure. In addition to that, list of machine learning algorithms, list of the performance metrics, list of inputs data and outputs results are presented. Moreover, open research challenges, the benefits of utilizing machine learning and the recommendations for new research opportunities that need to be addressed for the synergistic integration of multidisciplinary works are organized and presented accordingly.
DISCUSSION
The state-of-the-art studies on the E-triage and priority systems that utilise machine learning algorithms in telemedicine architecture are discussed. This approach allows the researchers to understand the modernisation of healthcare systems and the efficient use of artificial intelligence and machine learning. In particular, the growing worldwide population and various chronic diseases such as heart chronic diseases, blood pressure and diabetes, require smart health monitoring systems in E-triage and priority systems, in which machine learning algorithms could be greatly beneficial.
CONCLUSIONS
Although research directions on E-triage and priority systems that use machine learning algorithms in telemedicine vary, they are equally essential and should be considered. Hence, we provide a comprehensive review to emphasise the advantages of the existing research in multidisciplinary works of artificial intelligence, machine learning and healthcare services.
Collapse