1
|
Sanjita Devi H, Rajiv C, Mondal G, Khan ZA, Devi SD, Bharali R, Chattoraj A. Influence of photoperiod variations on the mRNA expression pattern of melatonin bio-synthesizing enzyme genes in the pineal organ and retina: A study in relation to the serum melatonin profile in the tropical carp Catla catla. JOURNAL OF FISH BIOLOGY 2022; 101:1569-1581. [PMID: 36205436 DOI: 10.1111/jfb.15234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Surface-dwelling C. catla were exposed to different photoperiods (8L:16D, 12L:12D, 12D:12L and 16L:8D) and the mRNA level profile of enzymes involved in melatonin synthesis was evaluated in the pineal gland and retina. Furthermore, a comparative analysis of the serum melatonin profile with the mRNA level was also performed. The results indicated diurnal variations in the transcripts of tph1, aanat and hiomt in the pineal organ and retina, and these variations change with the change in lighting regime. The serum melatonin profile showed rhythmicity in the natural photoperiod, but the serum melatonin level increased proportionally with increasing daylength. In short photoperiods, the peak value (though lower than in long photoperiods) of melatonin maintains a longer duration in serum. Moreover, the comparative analysis revealed a similar profile of mRNA of pineal aanat1 and aanat2 with serum melatonin under the same lighting conditions. This indicates that serum melatonin is produced by the pineal gland. Our results specify the importance of day length and the timing of onset or offset of the dark for maintaining the oscillating levels of serum melatonin and mRNA levels of melatonin biosynthesizing enzyme genes in the pineal organ and retina as well. The findings in this study highlight the distinctive pattern of mRNA levels in the pineal organ and retina under different photoperiods. The pineal melatonin biosynthesizing enzyme genes showed a similar pattern with serum melatonin levels while the retinal genes changed dramatically with photoperiod. We also revealed a light-dependent transcriptional regulation of pineal aanat genes in C. catla. Moreover, our results suggest that ALAN and skyglow can influence the levels of serum melatonin and its biosynthesis, resulting in desynchronization of the entire biological clock as well as the overall physiology of the animal.
Collapse
Affiliation(s)
| | - Chongtham Rajiv
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Gopinath Mondal
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Zeeshan Ahmad Khan
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Sijagurumayum Dharmajyoti Devi
- Department of Biotechnology, Government of India, Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Imphal, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
| |
Collapse
|
2
|
Kushala KB, Nithin MS, Girisha SK, Dheeraj SB, Sowndarya NS, Puneeth TG, Suresh T, Naveen Kumar BT, Vinay TN. Fish immune responses to natural infection with carp edema virus (Koi sleepy disease): An emerging fish disease in India. FISH & SHELLFISH IMMUNOLOGY 2022; 130:624-634. [PMID: 36126841 DOI: 10.1016/j.fsi.2022.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Emerging pathogen, carp edema virus (CEV) causes koi sleepy disease (KSD) in Koi and common carp causing severe mortalities worldwide. In the present study, a total of 150 fish species belonging to eight different families were sampled from the ornamental fish retailers and farms, located in Karnataka, India. The OIE protocol viz., level-I, II and III diagnoses confirmed the infection of CEV in 10 koi fish. Interestingly, other fish species belonging to different fish family including cyprinidae family were negative to CEV. Further, CEV infection was confirmed by sequencing (partial 4a gene); it showed the similarity with that of CEV reported from India and Germany strains with similarity of 97.4-99.94% and belonged to genogroup IIa. TEM analysis of purified CEV, in vivo cohabitation and tissue infection experiments confirmed the CEV infection. In addition, viral load was significantly higher (106-7 copies) in koi collected from Dakshina Kannada than of Bengaluru (103-4 copies). To understand the host-pathogen interaction, different organs such as gill, kidney, liver and spleen from naturally (CEV) infected koi were used to study the immune gene responses by using eight innate and one adaptive immune response. Results indicated that TNF-α, RohTNF-α, iNOS, IFN-γ and IL-10, and catalyze β-2M of MHC class I pathway genes were upregulated in koi. Higher expression of immune genes during the CEV infection may have inhibited viral replication and mount an antigenic adaptive response. Similar to other viral infections, interferon-γ play an important role during poxvirus infections. Quantification of immune genes in infected fish will provide insights into the host responses and provide valuable information to devise intervention strategies to prevent and control disease due to CEV.
Collapse
Affiliation(s)
- K B Kushala
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - M S Nithin
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - S K Girisha
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India.
| | - S B Dheeraj
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - N S Sowndarya
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - T G Puneeth
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - T Suresh
- College of Fisheries, Karnataka Veterinary, Animal and Fisheries Sciences University, Matsyanagar, Mangalore, 575002, Karnataka, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, Punjab, India.
| | - T N Vinay
- Indian Council of Agricultural Research, Central Institute of Brackishwater Aquaculture, MRC Nagar, Chennai, Tamil Nadu, 600028, India
| |
Collapse
|
3
|
Arya P, Pradhan P, Paria A, Sharma R, Verma DK, Ravindra, Rathore G, Sood N. Ontogeny and tissue-specific expression of immune-relevant genes in Catla catla (Hamilton). Gene Expr Patterns 2019; 34:119071. [DOI: 10.1016/j.gep.2019.119071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 01/29/2023]
|
4
|
Validation of reference genes for expression analysis in a teleost fish (Catla catla Hamilton) exposed to an endocrine-disrupting chemical, bisphenol-A. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2017. [DOI: 10.1007/s12210-017-0653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Rather MA, Basha SH, Bhat IA, Sharma N, Nandanpawar P, Badhe M, P GB, Chaudhari A, Sundaray JK, Sharma R. Characterization, molecular docking, dynamics simulation and metadynamics of kisspeptin receptor with kisspeptin. Int J Biol Macromol 2017; 101:241-253. [PMID: 28336274 DOI: 10.1016/j.ijbiomac.2017.03.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 11/17/2022]
Abstract
We report molecular characterization of the kisspeptin receptor (kiss1r), an essential gatekeeper for reproduction and onset of puberty in vertebrates. The full-length cDNA sequence of kiss1r is 1786bp which consist of 5' UTR (untranslated region) 261bp, 3' UTR of 424bp and open reading frame of 1101 encoding a putative protein of 366 amino acids. Basal tissue expression pattern of kiss1r mRNA revealed that it is mainly expressed in the brain and testis. We also report the structure of the kiss1r, along with plausible activation mechanism of this receptor by kisspeptin using computational modelling and dynamic simulation approach of multiple 100ns of timescale. A present modelling and simulations studies shed light on the molecular level of interaction, suggesting that direct hydrogen bonds between ASN4, SER5, GLY7, ARG9 and PHE10 of kisspeptin and TRP7, ASN8, GLU11, ILE17, ASN19 and TYR183 of kiss1r could be crucial role players in initial binding of receptor and the kisspeptin towards allosteric modulatory effects of kisspeptin on the receptor. To the best our knowledge, this is the first report on computational modelling and molecular dynamic simulations of kiss1r in animals shedding light on its possible mode of activation.
Collapse
Affiliation(s)
- Mohd Ashraf Rather
- Department of Fisheries Biology, College of Fisheries Shirgaon, Rantagiri, Maharashtra, India.
| | - Syed Hussain Basha
- Innovative Informatica Technologies, Mayurinagar, Miyapur, Hyderabad, 500 049, India
| | - Irfan Ahmad Bhat
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai-61, India
| | - Niti Sharma
- Central Inland Fisheries Research Institute, Regional Centre, Guwahati, Assam, 781 006, India
| | - Priyanka Nandanpawar
- Division of Fish Genetics and Biotechnology, Central Institute of Freshwater Aquaculture, Odisha, 751 002, India
| | - Mohan Badhe
- Division of Fish Genetics and Biotechnology, Central Institute of Freshwater Aquaculture, Odisha, 751 002, India
| | - Gireesh-Babu P
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai-61, India
| | - Aparna Chaudhari
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai-61, India
| | - Jitendra Kumar Sundaray
- Division of Fish Genetics and Biotechnology, Central Institute of Freshwater Aquaculture, Odisha, 751 002, India
| | - Rupam Sharma
- Division of Fish Genetics and Biotechnology, Central Institute of Fisheries Education, Mumbai-61, India
| |
Collapse
|
6
|
Sanjita Devi H, Rajiv C, Mondal G, Khan ZA, Dharmajyoti Devi S, Yumnamcha T, Bharali R, Chattoraj A. Melatonin bio-synthesizing enzyme genes (Tph1, Aanat1, Aanat2, and Hiomt) and their temporal pattern of expression in brain and gut of a tropical carp in natural environmental conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/23312025.2016.1230337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| | - Zeeshan Ahmad Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| | - Sijagurumayum Dharmajyoti Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| | - Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati 781 014, Assam, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Animal Resources Programme, Department of Biotechnology, Institute of Bioresources and Sustainable Development, Government of India, Takyelpat, Imphal 795 001, Manipur, India
| |
Collapse
|