1
|
Streptomyces hydrogenans strain DH-16 alleviates negative impact of Meloidogyne incognita stress by modifying physio-biochemical attributes in Solanum lycopersicum plants. Sci Rep 2022; 12:15214. [PMID: 36076057 PMCID: PMC9458671 DOI: 10.1038/s41598-022-19636-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
The current study assessed the nematicidal and plant growth promoting potential of metabolites produced by Streptomyces hydrogenans strain DH-16 on morphological and physiological activities in 60 days old Solanum lycopersicum plants grown under Meloidogyne incognita stress. M. incognita infestation altered the levels of various photosynthetic pigments, various stress markers, enzymatic and non-enzymatic antioxidants in S. lycopersicum plants grown under in-vivo conditions. However, treatment with culture cells, supernatant and extract produced by S. hydrogenans strain DH-16 significantly reduced the number of galls in M. incognita infested plants when compared with untreated M. incognita infected plants. Moreover, the culture cells/ supernatant/ extract remarkably lowered the levels of stress markers (Hydrogen peroxide and Malondialdehyde) in infected plants and enhanced the activities of non-enzymatic antioxidants (glutathione, tocopherol) and enzymatic antioxidants (Catalase, Superoxide dismutase, Ascorbate peroxidase, Guaiacol peroxidase, Gluatathione-S-transferase and Polyphenol oxidase) in metabolites treated M. incognita infected plants. The enhanced level of different photosynthetic attributes were also evaluated by studying gas exchange parameters and different plant pigments. Moreover, an increment in the content of phenolic compounds such as total phenols, anthocyanin and flavonoids were also reflected in treated and nematode infested plants. The present study also evaluated the microscopic analysis depicting cell viability, nuclear damage and hydrogen peroxide localization in differently treated plants. The outcome of the present study therefore endorses the efficacy of DH-16 as a potential biocontrol agent that help plants in mitigating M. incognita stress.
Collapse
|
2
|
Zhang S, Gan Y, Ji W, Xu B, Hou B, Liu J. Mechanisms and Characterization of Trichoderma longibrachiatum T6 in Suppressing Nematodes ( Heterodera avenae) in Wheat. FRONTIERS IN PLANT SCIENCE 2017; 8:1491. [PMID: 28966623 PMCID: PMC5605630 DOI: 10.3389/fpls.2017.01491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 08/11/2017] [Indexed: 06/02/2023]
Abstract
Heterodera avenae is an important soil-borne pathogen that affects field crops worldwide. Chemical nematicides can be used to control the nematode, but they bring toxicity to the environment and human. Trichoderma longibrachiatum has been shown to have the ability to control H. avenae cysts, but detailed microscopic observations and bioassays are lacking. In this study, we used microscopic observations and bioassays to study the effect of T. longibrachiatum T6 (TL6) on the eggs and second stage juveniles (J2s) of H. avenae, and investigate the role of TL6 in inducing the resistance to H. avenae in wheat seedling at physiological and biochemical levels. Microscopic observations recorded that TL6 parasitized on the H. avenae eggs, germinated, and produced a large number of hyphae on the eggs surface at the initial stage, thereafter, the eggs were completely surrounded by dense mycelia and the contents of eggs were lysed at the late stage. Meanwhile, the conidia suspension of TL6 parasitized on the surface of J2s, produced a large number of hyphae that penetrated the cuticle and caused deformation of the nematodes. TL6 at the concentration of 1.5 × 107 conidia ml-1 had the highest rates of parasitism on eggs and J2s, reflected by the highest hatching-inhibition of eggs and the mortality of J2s. In the greenhouse experiments, wheat seedlings treated with TL6 at 1.5 × 107 conidia ml-1 had reduced H. avenae infection, and increased plant growth significantly compared to the control. The cysts and juveniles in soil were reduced by 89.8 and 92.7%, the juveniles and females in roots were reduced by 88.3 and 91.3%, whereas the activity of chitinase and β-1, 3-glucanase, total flavonoids and lignin contents in wheat roots were increased significantly at different stage after inoculation with the eggs and TL6 conidia in comparison to the control. Maximum activity of chitinase and β-1, 3-glucanase were recorded at the 20th and 15th Days after inoculation with TL6 and thereafter it declined. The maximum contents of total flavonoids and lignin were recorded at the 35th and 40th Days after inoculation with TL6. After being stained with the rapid vital dyes of acridine orange (AO) and neutral red (NR), the frozen and infected eggs and J2s of H. avenae changed color to orange and red, respectively, while the color of eggs and J2s in control group did not change. Therefore, our results suggest that TL6 is potentially an effective bio-control agent for H. avenae. The possible mechanisms by which TL6 suppresses H. avenae infection are due to the direct parasitic and lethal effect of TL6 on the eggs and J2s activity, and the induced defense response in wheat plants together.
Collapse
Affiliation(s)
- Shuwu Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural UniversityLanzhou, China
| | - Yantai Gan
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural UniversityLanzhou, China
- Swift Current Research & Development Centre, Agriculture and Agri-Food CanadaSwift Current, SK, Canada
| | - Weihong Ji
- Human-Wildlife Interactions Research Group, Institute of Mathematical and Natural Sciences, Massey UniversityAuckland, New Zealand
| | - Bingliang Xu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural UniversityLanzhou, China
| | - Baohong Hou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural UniversityLanzhou, China
| | - Jia Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural UniversityLanzhou, China
| |
Collapse
|
3
|
Gupta R, Singh A, Pandey R. Microbe-based technology ameliorates glandular trichomes, secondary metabolites and antioxidants in Pelargonium graveolens L'Hér. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4151-4159. [PMID: 26762896 DOI: 10.1002/jsfa.7617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/23/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Despite the vast exploration of microbes for plant health, there is a lack of knowledge about the synergistic effects of specific microorganisms in sustainable agriculture, especially in medicinal plants such as Pelargonium graveolens L'Hér. The aim of this study was to evaluate how synergistic microbes Trichoderma harzianum ThU, Glomus intraradices and Bacillus subtilis CIM affected crop productivity, secondary metabolites and glandular trichome number in P. graveolens. RESULTS The results demonstrated a significant (P < 0.05) increase in plant growth, secondary metabolites, total chlorophyll, carotenoids, carbohydrates, total phenolics, total flavonoids, free radical-scavenging activity and total antioxidant capacity of P. graveolens treated with synergistic bioinoculants as compared with the control. Most interestingly, an increase in essential oil by 32% in the treatment with all three microbes was observed. Furthermore, the principal aroma compounds citronellol and geraniol also increased in the same treatment. A positive and direct correlation was observed between essential oil content and number of glandular trichomes in all treatments. CONCLUSION The present study highlights an explicit amalgamation of prospective microbes showing potential for synergism that act as biostimulants in enhancing plant production and improving the antioxidant and aroma profile of P. graveolens. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Microbial Technology and Nematology, CSIR - Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, India
| | - Akanksha Singh
- Department of Microbial Technology and Nematology, CSIR - Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR - Central Institute of Medicinal and Aromatic Plants, PO CIMAP, Lucknow, 226015, India
| |
Collapse
|
4
|
Gupta R, Singh A, Gupta MM, Pandey R. Cumulative role of bioinoculants on growth, antioxidant potential and artemisinin content in Artemisia annua L. under organic field conditions. World J Microbiol Biotechnol 2016; 32:167. [PMID: 27565777 DOI: 10.1007/s11274-016-2130-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/17/2016] [Indexed: 11/24/2022]
Abstract
Artemisia annua L. is mostly known for a bioactive metabolite, artemisinin, an effective sesquiterpene lactone used against malaria without any reputed cases of resistance. In this experiment, bioinoculants viz., Streptomyces sp. MTN14, Bacillus megaterium MTN2RP and Trichoderma harzianum Thu were applied as growth promoting substances to exploit full genetic potential of crops in terms of growth, yield, nutrient uptake and particularly artemisinin content. Further, multi-use of the bioinoculants singly and in combinations for the enhancement of antioxidant potential and therapeutic value was also undertaken which to our knowledge has never been investigated in context with microbial application. The results demonstrated that a significant (P < 0.05) increase in growth, nutrient uptake, total phenolic, flavonoid, free radical scavenging activity, ferric reducing antioxidant power, reducing power and total antioxidant capacity were observed in the A. annua treated with a combination of bioinoculants in comparison to control. Most importantly, an increase in artemisinin content and yield by 34 and 72 % respectively in the treatment having all the three microbes was observed. These results were further authenticated by the PCA analysis which showed positive correlation between plant macronutrients and antioxidant content with plant growth and artemisinin yield of A. annua. The present study thus highlights a possible new application of compatible bioinoculants for enhancing the growth along with antioxidant and therapeutic value of A. annua.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Akanksha Singh
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - M M Gupta
- Department of Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India.
| |
Collapse
|
5
|
Gupta R, Singh A, Kanaujia R, Kushwaha S, Pandey R. Trichoderma harzianum ThU and Its Metabolites Underscore Alteration in Essential Oils of Ocimum basilicum and Ocimum sanctum. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40011-016-0753-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
6
|
Singh A, Gupta R, Srivastava M, Gupta MM, Pandey R. Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:253-260. [PMID: 27436916 PMCID: PMC4938826 DOI: 10.1007/s12298-016-0359-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/07/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
In the present investigation, metabolites of Streptomyces sp. MTN14 and Trichoderma harzianum ThU significantly enhanced biomass yield (3.58 and 3.48 fold respectively) in comparison to the control plants. The secondary metabolites treatments also showed significant augmentation (0.75-2.25 fold) in withanolide A, a plant secondary metabolite. Lignin deposition, total phenolic and flavonoid content in W. somnifera were maximally induced in treatment having T. harzianum metabolites. Also, Trichoderma and Streptomyces metabolites were found much better in invoking in planta contents and antioxidants compared with their live culture treatments. Therefore, identification of new molecular effectors from metabolites of efficient microbes may be used as biopesticide and biofertilizer for commercial production of W. somnifera globally.
Collapse
Affiliation(s)
- Akanksha Singh
- />Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| | - Rupali Gupta
- />Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| | - Madhumita Srivastava
- />Department of Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| | - M. M. Gupta
- />Department of Analytical Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| | - Rakesh Pandey
- />Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015 India
| |
Collapse
|