1
|
Rauwel E, Arya G, Praakle K, Rauwel P. Use of Aloe Vera Gel as Media to Assess Antimicrobial Activity and Development of Antimicrobial Nanocomposites. Int J Mol Sci 2024; 25:5599. [PMID: 38891787 PMCID: PMC11171552 DOI: 10.3390/ijms25115599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Antimicrobial resistance is a menace to public health on a global scale. In this regard, nanomaterials exhibiting antimicrobial properties represent a promising solution. Both metal and metal oxide nanomaterials are suitable candidates, even though their mechanisms of action vary. Multiple antimicrobial mechanisms can occur simultaneously or independently; this includes either direct contact with the pathogens, nanomaterial uptake, oxidative stress, ion release, or any of their combinations. However, due to their specific properties and more particularly fast settling, existing methods to study the antimicrobial properties of nanoparticles have not been specifically adapted in some cases. The development of methodologies that can assess the antimicrobial properties of metallic nanomaterials accurately is necessary. A cost-effective methodology with a straightforward set-up that enables the easy and quick assessment of the antimicrobial properties of metal nanoparticles with high accuracy has been developed. The methodology is also capable of confirming whether the killing mechanism involves ionic diffusion. Finally, Aloe Vera gel showed good properties for use as a medium for the development of antimicrobial ointment.
Collapse
Affiliation(s)
- Erwan Rauwel
- Institute of Veterinary Medicine & Animal Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia;
- Institute of Forestry and Engineering, Kreutzwaldi 56/1, 51006 Tartu, Estonia; (G.A.); (P.R.)
| | - Geeta Arya
- Institute of Forestry and Engineering, Kreutzwaldi 56/1, 51006 Tartu, Estonia; (G.A.); (P.R.)
| | - Kristi Praakle
- Institute of Veterinary Medicine & Animal Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia;
| | - Protima Rauwel
- Institute of Forestry and Engineering, Kreutzwaldi 56/1, 51006 Tartu, Estonia; (G.A.); (P.R.)
| |
Collapse
|
2
|
Taboada-López MV, Bartczak D, Cuello-Núñez S, Goenaga-Infante H, Bermejo-Barrera P, Moreda-Piñeiro A. AF4-UV-ICP-MS for detection and quantification of silver nanoparticles in seafood after enzymatic hydrolysis. Talanta 2021; 232:122504. [PMID: 34074453 DOI: 10.1016/j.talanta.2021.122504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
A method based on asymmetric flow field-flow fractionation (AF4) coupled to ultraviolet-visible (UV-vis) spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS) has been developed for silver nanoparticles (Ag NPs) detection and quantification in bivalve molluscs. Samples were pre-treated using a conventional enzymatic (pancreatin and lipase) hydrolysis procedure (37 °C, 12 h). AF4 was performed using a regenerated cellulose (RC) membrane (10 kDa, 350 μm spacer) and aqueous 5 mM Tris-HCl pH = 7.4 as carrier. AF4 separation was achieved with a program that included a focusing step with tip and focus flows of 0.20 and 3.0 mL min-1, respectively, and an injection time of 4.0 min. Elution of different size fractions was performed using a cross flow of 3.0 mL min-1 for 15 min, followed by linear cross flow decrease for 7.5 min, and a washing step for 9.4 min with no cross flow. Several bivalve molluscs (clams, oysters and variegated scallops) were analysed for total Ag content (ICP-MS after microwave assisted acid digestion), and for Ag NPs by the method presented here. Results show that Ag NPs are detected at the same elution time than proteins (UV monitoring at 280 and 405 nm), which suggests a certain interaction occurred between Ag NPs with proteins in the enzymatic extracts. AF4-UV-ICP-MS fractograms also suggest different Ag NPs size distributions for selected samples. Membrane recoveries, determined by peak area comparison of fractograms with and without application of cross flow, were within the 49-121% range. Confirmation of the presence Ag NPs in the investigated enzymatic extracts was demonstrated by SEM after an oxidative pre-treatment based on hydrogen peroxide and microwave irradiation.
Collapse
Affiliation(s)
- María Vanesa Taboada-López
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology. Faculty of Chemistry. Universidade de Santiago de Compostela. Avenida Das Ciencias, S/n. 15782, Santiago de Compostela. Spain
| | - Dorota Bartczak
- LGC Limited. Queen's Road, TW11 0LY, Teddington, United Kingdom
| | | | | | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology. Faculty of Chemistry. Universidade de Santiago de Compostela. Avenida Das Ciencias, S/n. 15782, Santiago de Compostela. Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT), Department of Analytical Chemistry, Nutrition and Bromatology. Faculty of Chemistry. Universidade de Santiago de Compostela. Avenida Das Ciencias, S/n. 15782, Santiago de Compostela. Spain.
| |
Collapse
|
3
|
Thwala M, Klaine S, Musee N. Exposure Media and Nanoparticle Size Influence on the Fate, Bioaccumulation, and Toxicity of Silver Nanoparticles to Higher Plant Salvinia minima. Molecules 2021; 26:molecules26082305. [PMID: 33923373 PMCID: PMC8071571 DOI: 10.3390/molecules26082305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) are favoured antibacterial agents in nano-enabled products and can be released into water resources where they potentially elicit adverse effects. Herein, interactions of 10 and 40 nm AgNPs (10-AgNPs and 40-AgNPs) with aquatic higher plant Salvinia minima at 600 µg/L in moderately hard water (MHW), MHW of raised calcium (Ca2+), and MHW containing natural organic matter (NOM) were examined. The exposure media variants altered the AgNPs’ surface properties, causing size-dependent agglomeration. The bio-accessibility in the ascending order was: NOM < MHW < Ca2+, was higher in plants exposed to 10-AgNPs, and across all exposures, accumulation was higher in roots compared to fronds. The AgNPs reduced plant growth and the production of chlorophyll pigments a and b; the toxic effects were influenced by exposure media chemistry, and the smaller 10-AgNPs were commonly the most toxic relative to 40-AgNPs. The toxicity pattern was linked to the averagely higher dissolution of 10-AgNPs compared to the larger counterparts. The scanning electron microscopy and X-ray fluorescence analytical techniques were found limited in examining the interaction of the plants with AgNPs at the low exposure concentration used in this study, thus challenging their applicability considering the even lower predicted environmental concentrations AgNPs.
Collapse
Affiliation(s)
- Melusi Thwala
- Water Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa;
- Zoology Department, University of Johannesburg, Auckland Park 2006, South Africa
- Department of Environmental Health, Nelson Mandela University, Port Elizabeth 6031, South Africa
- Centre for Environmental Management, University of the Free State, Bloemfontein 9300, South Africa
| | - Stephen Klaine
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Ndeke Musee
- Emerging Contaminants Ecological and Risk Assessment (ECERA) Research Group, Department of Chemical Engineering, University of Pretoria, Pretoria 0001, South Africa
- Correspondence: or
| |
Collapse
|
4
|
Chandra A, Bhattarai A, Yadav AK, Adhikari J, Singh M, Giri B. Green Synthesis of Silver Nanoparticles Using Tea Leaves from Three Different Elevations. ChemistrySelect 2020. [DOI: 10.1002/slct.201904826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abhishek Chandra
- School of Chemical SciencesCentral University of Gujarat, Gandhinagar India
| | - Ajaya Bhattarai
- Department of Chemistry, M.M.A.M.C.Tribhuvan University, Biratnagar Nepal
| | - Ashok K. Yadav
- Department of Chemistry, M.M.A.M.C.Tribhuvan University, Biratnagar Nepal
| | - Janak Adhikari
- Department of Chemistry, M.M.A.M.C.Tribhuvan University, Biratnagar Nepal
| | - Man Singh
- School of Chemical SciencesCentral University of Gujarat, Gandhinagar India
| | - Basant Giri
- Center for Analytical SciencesKathmandu Institute of Applied Sciences Kathmandu PO Box 23002 Nepal
| |
Collapse
|
5
|
Küünal S, Visnapuu M, Volubujeva O, Soares Rosario M, Rauwel P, Rauwel E. Optimisation of plant mediated synthesis of silver nanoparticles by common weed Plantago major and their antimicrobial properties. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/613/1/012003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Characterisation of titanium oxide nanomaterials in sunscreens obtained by extraction and release exposure scenarios. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0329-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Kanwal Z, Raza MA, Manzoor F, Riaz S, Jabeen G, Fatima S, Naseem S. A Comparative Assessment of Nanotoxicity Induced by Metal (Silver, Nickel) and Metal Oxide (Cobalt, Chromium) Nanoparticles in Labeo rohita. NANOMATERIALS 2019; 9:nano9020309. [PMID: 30823536 PMCID: PMC6409703 DOI: 10.3390/nano9020309] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
In the present in vivo study, we provide a comparison of toxicological consequences induced by four different types of spherical nanoparticles (NPs)—silver nanoparticles (AgNPs, 40 ± 6 nm), nickel (NiNPs, 43 ± 6 nm), cobalt oxide (Co3O4NPs, 60 ± 6 nm), and chromium oxide (Cr3O4NPs, 50 ± 5 nm)—on freshwater fish Labeo rohita. Fish were exposed to NPs (25 mg/L) for 21 days. We observed a NPs type-dependent toxicity in fish. An altered behavior showing signs of stress and a substantial reduction in total leukocyte count was noticed in all NP-treated groups. A low total erythrocyte count in all NP-treated fish except for Co3O4NPs was discerned while a low survival rate in the case of Cr3O4NP-treated fish was observed. A significant decrease in growth and hemoglobin were noticed in NiNP- and Cr3O4NP-treated fish. A considerable total protein elevation was detected in NiNP-, Co3O4NP-, and Cr3O4NP-treated groups. An upgrading in albumin level was witnessed in Co3O4NP- and Cr3O4NP-treated groups while a high level of globulin was noted in NiNP- and Co3O4NP-exposed groups. In all NP-treated groups, a depleted activity of antioxidative enzymes and pathological lesions in liver and kidney were noticed.
Collapse
Affiliation(s)
- Zakia Kanwal
- Department of Zoology, Faculty of Natural Science, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Muhammad Akram Raza
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Farkhanda Manzoor
- Department of Zoology, Faculty of Natural Science, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Saira Riaz
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| | - Ghazala Jabeen
- Department of Zoology, Faculty of Natural Science, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Shafaq Fatima
- Department of Zoology, Faculty of Natural Science, Lahore College for Women University, Jail Road Lahore 54000, Pakistan.
| | - Shahzad Naseem
- Centre of Excellence in Solid State Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
8
|
Prasher P, Singh M, Mudila H. Silver nanoparticles as antimicrobial therapeutics: current perspectives and future challenges. 3 Biotech 2018; 8:411. [PMID: 30237958 PMCID: PMC6138003 DOI: 10.1007/s13205-018-1436-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Utility of silver metal in antimicrobial therapy is an accepted practice since ages that faded with time because of the identification of a few silver resistant strains in the contemporary era. A successive development of antibiotics soon followed. However, due to an indiscriminate and unregulated use coupled with poor legal control measures and a dearth of expertise in handling the critical episodes, the antibiotics era has already seen a steep decline in the past decades due to the evolution of multi-drug resistant 'superbugs' which pose a sizeable challenge to manage with. Due to limited options in the pipeline and no clear strategy in the forefront, the aspirations for novel, MDR focused drug discovery to target the 'superbugs' arose which once again led to the rise of AgNPs in antimicrobial research. In this review, we have focused on the green routes for the synthesis of AgNPs, the mode of microbial inhibition by AgNPs, synergistic effect of AgNPs with antibiotics and future challenges for the development of nano-silver-based therapeutics.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, 248007 India
| | - Manjeet Singh
- Department of Chemistry, University of Petroleum and Energy Studies, Dehradun, 248007 India
| | - Harish Mudila
- Lovely Professional University, Punjab, 144411 India
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263153 India
| |
Collapse
|
9
|
Vedelago J, Gomez CG, Valente M, Mattea F. Green synthesis of silver nanoparticles aimed at improving theranostics. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Doddapaneni SJDS, Amgoth C, Kalle AM, Suryadevara SN, Alapati KS. Antimicrobial and anticancer activity of AgNPs coated with Alphonsea sclerocarpa extract. 3 Biotech 2018; 8:156. [PMID: 29511607 PMCID: PMC5832654 DOI: 10.1007/s13205-018-1155-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
The synthesis and characterization of an aggregate of AgNPs coated with plant extract (PE) from Alphonsea sclerocarpa and its significant antimicrobial activity and inhibition on K562 (blood cancer) cells have been appended in the article. Synthesis of aggregate [(AgNPs)-(PE)] has been followed by a facile eco-friendly approach without using any harmful chemicals. The morphology of an aggregate [(AgNPs)-(PE)] was confirmed by TEM and SEM microscopic characterizations. Properties like solid state, the presence of functional groups, and elemental composition have been characterized through the XRD, FTIR, and EDAX. The biocompatibility of synthesized aggregate of [(AgNPs)-(PE)] was confirmed by the MTT assay. An in vitro cell (HEK293)-based studies were performed for the biocompatibility tests and it is found that the aggregate [(AgNPs)-(PE)] is not harmful to normal/healthy cells. Even though A. sclerocarpa show the antimicrobial (antibacterial and antifungal) activity, it has been further enhanced with the developed aggregate of [(AgNPs)-(PE)]. Furthermore, it has been extended to examine the cellular inhibition on K562 cells and obtained > 75% cell inhibition for 24 h treated cells.
Collapse
Affiliation(s)
| | - Chander Amgoth
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad, TS 500046 India
| | - Arunasree M Kalle
- Department of Animal Sciences, School of Life sciences, University of Hyderabad, Hyderabad, TS 500046 India
| | | | - Krishna Satya Alapati
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, 522510 India
| |
Collapse
|
11
|
Chandra A, Singh M. Biosynthesis of amino acid functionalized silver nanoparticles for potential catalytic and oxygen sensing applications. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00569e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A green approach to the biosynthesis of amino acid functionalized silver nanoparticles (AgNPs) using Neem gum is reported herein.
Collapse
Affiliation(s)
- Abhishek Chandra
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| | - Man Singh
- School of Chemical Sciences
- Central University of Gujarat
- Gandhinagar-382030
- India
| |
Collapse
|
12
|
He D, Rauwel E, Malpass-Evans R, Carta M, McKeown NB, Gorle DB, Anbu Kulandainathan M, Marken F. Redox reactivity at silver microparticle—glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3534-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Rauwel E, Simón-Gracia L, Guha M, Rauwel P, Kuunal S, Wragg D. Silver metal nanoparticles study for biomedical and green house applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/175/1/012011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|