1
|
Liu Z, Ren X, Duan X, Sarmah AK, Zhao X. Remediation of environmentally persistent organic pollutants (POPs) by persulfates oxidation system (PS): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160818. [PMID: 36502984 DOI: 10.1016/j.scitotenv.2022.160818] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Over the past few years, persistent organic pollutants (POPs) exhibiting high ecotoxicity have been widely detected in the environment. Persulfate-oxidation hybrid system is one of the most widely used novel advanced oxidation techniques and is based on the persulfate generation of SO4-∙ and ∙OH from persulfate to degrade POPs. The overarching aim of this work is to provide a critical review of the variety of methods of peroxide activation (e.g., light activated persulfate, heat-activated persulfate, ultrasound-activated persulfate, electrochemically-activated persulfate, base-activated persulfate, transition metal activated persulfate, as well as Carbon based material activated persulfate). Specifically, through this article we make an attempt to provide the important characteristics and uses of main activated PS methods, as well as the prevailing mechanisms of activated PS to degrade organic pollutants in water. Finally, the advantages and disadvantages of each activation method are analyzed. This work clearly illustrates the benefits of different persulfate activation technologies, and explores persulfate activation in terms of Sustainable Development Goals, technical feasibility, toxicity assessment, and economics to facilitate the large-scale application of persulfate technologies. It also discusses how to choose the most suitable activation method to degrade different types of POPs, filling the research gap in this area and providing better guidance for future research and engineering applications of persulfates.
Collapse
Affiliation(s)
- Zhibo Liu
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Xin Ren
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Xiaoyue Duan
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China
| | - Ajit K Sarmah
- The Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Xuesong Zhao
- College of Environmental Science and Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China; Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China.
| |
Collapse
|
2
|
Lalas K, Arvaniti OS, Zkeri E, Nika MC, Thomaidis NS, Mantzavinos D, Stasinakis AS, Frontistis Z. Thermally activated persulfate oxidation of ampicillin: Kinetics, transformation products and ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157378. [PMID: 35843320 DOI: 10.1016/j.scitotenv.2022.157378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/10/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The heat-activated persulfate system showed encouraging results for the destruction of the widely used antibiotic Ampicillin (AMP). AMP removal follows exponential decay, and the observed kinetic constant was enhanced with persulfate (PS) dosage at the range 50-500 mg L-1 and temperature (40-60 °C), while AMP thermolysis at 60 °C was almost negligible. The apparent activation energy was estimated to 124.7 kJ mol-1. Alkaline conditions, water matrix constituents like bicarbonates, humic acid, and real water matrices retarded AMP oxidation. Experiments performed with tert-butanol and methanol as scavengers demonstrated the contribution of sulfate radicals as the dominant reactive species. Seven transformation products (TPs) of AMP have been identified from AMP destruction. An EC50 value equal to 187 mg L-1 was calculated for 72 h of exposure of the microalgae Chlorella sorokiniana to AMP. According to the ecotoxicity experiments that conducted after treatment of AMP with PS for different reaction times, no important inhibition of microalgae was noticed for contact time of 72 h and 10 d. These results indicate the formation of no toxic AMP by-products for the applied experimental conditions.
Collapse
Affiliation(s)
- Kosmas Lalas
- Department of Chemical Engineering, University of Western Macedonia, GR 50132 Kozani, Greece
| | - Olga S Arvaniti
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR 26504 Patras, Greece; Department of Agricultural Development, Agrofood and Management of Natural Resources, National and Kapodistrian University of Athens, Psachna 34400, Greece
| | - Eirini Zkeri
- Department of Environment, University of the Aegean, GR 81100 Mytilene, Greece
| | - Maria-Christina Nika
- Department of Chemistry, Laboratory of Analytical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, GR 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Department of Chemistry, Laboratory of Analytical Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, GR 15771 Athens, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR 26504 Patras, Greece
| | | | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR 50132 Kozani, Greece.
| |
Collapse
|
3
|
Pandya K, T S AS, Kodgire P, Simon S. Combined ultrasound cavitation and persulfate for the treatment of pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2157-2174. [PMID: 36378172 DOI: 10.2166/wst.2022.304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years industrialization has caused magnificent leaps in the high profitable growth of pharmaceutical industries, and simultaneously given rise to environmental pollution. Pharmaceutical processes like extraction, purification, formulation, etc., generate a large volume of wastewater that contains high chemical oxygen demand (COD), biological oxygen demand, auxiliary chemicals, and different pharmaceutical substances or their metabolites in their active or inactive form. Its metabolites impart non-biodegradable toxic pollutants as a byproduct and intense color, which increases ecotoxicity into the water, thus this requires proper treatment before being discharged. This study focuses on the feasibility analysis of the utilization of ultrasound cavitation (20 kHz frequency) together with a persulfate oxidation approach for the treatment of complex pharmaceutical effluent. Process parameters like pH, amplitude intensity, oxidant dosage were optimized for COD removal applying response surface methodology-based Box-Behnken design. The optimum value observed for pH, amplitude intensity and oxidant dosage are 5, 20% and 100 mg/L respectively with 39.5% removal of COD in 60 min of fixed processing time. This study confirms that a combination of ultrasound cavitation and persulfate is a viable option for the treatment of pharmaceutical wastewater and can be used as an intensification technology in existing effluent treatment plants to achieve the highest amount of COD removal.
Collapse
Affiliation(s)
- Karan Pandya
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India E-mail:
| | - Anantha Singh T S
- Department of Civil Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India E-mail: ; Department of Civil Engineering, National Institute of Technology Calicut, Calicut, India
| | - Pravin Kodgire
- Department of Chemical Engineering, School of Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Saji Simon
- Department of Civil Engineering, National Institute of Technology Calicut, Calicut, India
| |
Collapse
|
4
|
Senthilkumar A, Ganeshbabu M, Karuppiah Lazarus J, Sevugarathinam S, John J, Ponnusamy SK, Velayudhaperumal Chellam P, Sillanpää M. Thermal and Radiation Based Catalytic Activation of Persulfate Systems in the Removal of Micropollutants: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Abiramasundari Senthilkumar
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Madhubala Ganeshbabu
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Jesintha Karuppiah Lazarus
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Shalini Sevugarathinam
- Centre for Research, Department of Biotechnology, Kamaraj College of Engineering & Technology, Vellakulam 625701, India
| | - Juliana John
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli 620015, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | | | - Mika Sillanpää
- Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus, Denmark
| |
Collapse
|
5
|
Zawadzki P. Visible Light-Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. WATER, AIR, AND SOIL POLLUTION 2022; 233:374. [PMID: 36090740 PMCID: PMC9440748 DOI: 10.1007/s11270-022-05831-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The scientific data review shows that advanced oxidation processes based on the hydroxyl or sulfate radicals are of great interest among the currently conventional water and wastewater treatment methods. Different advanced treatment processes such as photocatalysis, Fenton's reagent, ozonation, and persulfate-based processes were investigated to degrade contaminants of emerging concern (CECs) such as pesticides, personal care products, pharmaceuticals, disinfectants, dyes, and estrogenic substances. This article presents a general overview of visible light-driven advanced oxidation processes for the removal of chlorfenvinphos (organophosphorus insecticide), methylene blue (azo dye), and diclofenac (non-steroidal anti-inflammatory drug). The following visible light-driven treatment methods were reviewed: photocatalysis, sulfate radical oxidation, and photoelectrocatalysis. Visible light, among other sources of energy, is a renewable energy source and an excellent substitute for ultraviolet radiation used in advanced oxidation processes. It creates a high application potential for solar-assisted advanced oxidation processes in water and wastewater technology. Despite numerous publications of advanced oxidation processes (AOPs), more extensive research is needed to investigate the mechanisms of contaminant degradation in the presence of visible light. Therefore, this paper provides an important source of information on the degradation mechanism of emerging contaminants. An important aspect in the work is the analysis of process parameters affecting the degradation process. The initial concentration of CECs, pH, reaction time, and catalyst dosage are discussed and analyzed. Based on a comprehensive survey of previous studies, opportunities for applications of AOPs are presented, highlighting the need for further efforts to address dominant barriers to knowledge acquisition.
Collapse
Affiliation(s)
- Piotr Zawadzki
- Department of Water Protection, Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
| |
Collapse
|
6
|
Thermally activated persulfate-based Advanced Oxidation Processes — recent progress and challenges in mineralization of persistent organic chemicals: a review. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100839] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Herrera-Ordonez J. The role of sulfate radicals and pH in the decomposition of persulfate in aqueous medium: A step towards prediction. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Elimination of Lead by Biosorption on Parthenium Stem Powder Using Box-Behnken Design. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
9
|
Wang B, Wang Y. A comprehensive review on persulfate activation treatment of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154906. [PMID: 35364155 DOI: 10.1016/j.scitotenv.2022.154906] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
With increasingly serious environmental pollution and the production of various wastewater, water pollutants have posed a serious threat to human health and the ecological environment. The advanced oxidation process (AOP), represented by the persulfate (PS) oxidation process, has attracted increasing attention because of its economic, practical, safety and stability characteristics, opening up new ideas in the fields of wastewater treatment and environmental protection. However, PS does not easily react with organic pollutants and usually needs to be activated to produce oxidizing active substances such as sulfate radicals (SO4-) and hydroxyl radicals (OH) to degrade them. This paper summarizes the research progress of PS activation methods in the field of wastewater treatment, such as physical activation (e.g., thermal, ultrasonic, hydrodynamic cavitation, electromagnetic radiation activation and discharge plasma), chemical activation (e.g., alkaline, electrochemistry and catalyst) and the combination of the different methods, putting forward the advantages, disadvantages and influencing factors of various activation methods, discussing the possible activation mechanisms, and pointing out future development directions.
Collapse
Affiliation(s)
- Baowei Wang
- School of Chemical Engineering and Technology, Tianjin University, China.
| | - Yu Wang
- School of Chemical Engineering and Technology, Tianjin University, China
| |
Collapse
|
10
|
Hoang NT, Nguyen VT, Minh Tuan ND, Manh TD, Le PC, Van Tac D, Mwazighe FM. Degradation of dyes by UV/Persulfate and comparison with other UV-based advanced oxidation processes: Kinetics and role of radicals. CHEMOSPHERE 2022; 298:134197. [PMID: 35276111 DOI: 10.1016/j.chemosphere.2022.134197] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the degradation of methylene blue (MeB), methyl orange (MeO), and rhodamin B (RhB) by the UV/Persulfate (UV/PS) process. The dye degradation in the investigated UV-based Advanced Oxidation Processes (UV/AOPs) followed the first-order kinetic model. The second-order rate constant of the dyes with •OH, SO4•-, and CO3•- were calculated and found to be: k•OH,MeB = 5.6 × 109 M-1 s-1, [Formula: see text] = 3.3 × 109 M-1 s-1, [Formula: see text] = 6.9 × 107 M-1 s-1; k•OH,MeO = 3.2 × 109 M-1 s-1, [Formula: see text] = 13 × 109 M-1 s-1, [Formula: see text] = 4.4 × 106 M-1 s-1; k•OH,RhB = 14.8 × 109 M-1 s-1, [Formula: see text] = 5 × 109 M-1 s-1, [Formula: see text] = 1 × 107 M-1 s-1. The steady-state concentrations of •OH and SO4•- (including other reactive species) were determined using both chemical probes and modeling methods (Kintecus® V6.8). In the UV/PS, the dye degradation depends on the pH of the solution with the order: kdye (at pH of 7) > kdye (in acidic conditions) > kdye (in alkaline conditions). The presence of water matrices had different impacts on dye degradation: 1) The HCO3- and Cl- promoted the degradation efficiency of one dye, but also inhibited the degradation of other dyes; 2) Humic acid (HA) inhibited dye degradation as it scavenged both •OH and SO4•-. The degradation of the dyes by UV/PS was also compared with the UV/Chlorine (UV/HOCl) and UV/H2O2 and it was established that: 1) In UV/PS and UV/HOCl, SO4•- and RCS contributed to dye degradation more than •OH, while •OH played a major role in dye degradation by UV/H2O2; 2) The calculated toxicity in UV/PS was the lowest probably due to the low toxicity of by-products; 3) For MeO and RhB, the UV/PS process is more beneficial for the total organic carbon (TOC) removal compared to that of the UV/HOCl and UV/H2O2 processes; 4) The UV/PS showed lower cost than the UV/HOCl and UV/H2O2 systems for MeO, and RhB degradation but higher cost for MeB removal.
Collapse
Affiliation(s)
- Nguyen Tien Hoang
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam.
| | - Vo Thang Nguyen
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam
| | - Nguyen Dinh Minh Tuan
- The University of Danang, University of Science and Technology, Da Nang, 550 000, Viet Nam
| | - Tran Duc Manh
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam
| | - Phuoc-Cuong Le
- The University of Danang, University of Science and Technology, Da Nang, 550 000, Viet Nam
| | - Dinh Van Tac
- The University of Danang, University of Science and Education, Da Nang, 550 000, Viet Nam
| | - Fredrick M Mwazighe
- Department of Chemistry, University of Nairobi, P. O. Box 30197, 00100, Nairobi, Kenya
| |
Collapse
|
11
|
|
12
|
Azzam AB, Abd El-Aziz AO, Mohamed SK. Activation of persulfate using CuS synthesized by ultrafast solid-state reaction for removal of organic pollutants from wastewater: Economical synthesis, catalytic performance, and mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Electrochemical Technologies to Decrease the Chemical Risk of Hospital Wastewater and Urine. Molecules 2021; 26:molecules26226813. [PMID: 34833906 PMCID: PMC8621562 DOI: 10.3390/molecules26226813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
The inefficiency of conventional biological processes to remove pharmaceutical compounds (PhCs) in wastewater is leading to their accumulation in aquatic environments. These compounds are characterized by high toxicity, high antibiotic activity and low biodegradability, and their presence is causing serious environmental risks. Because much of the PhCs consumed by humans are excreted in the urine, hospital effluents have been considered one of the main routes of entry of PhCs into the environment. In this work, a critical review of the technologies employed for the removal of PhCs in hospital wastewater was carried out. This review provides an overview of the current state of the developed technologies for decreasing the chemical risks associated with the presence of PhCs in hospital wastewater or urine in the last years, including conventional treatments (filtration, adsorption, or biological processes), advanced oxidation processes (AOPs) and electrochemical advanced oxidation processes (EAOPs).
Collapse
|
14
|
Dong C, Zhao X, Katsuragi Y, Kim H, Hayashi M, Matsubara R. Furoxan Incorporation into C-H Bonds Enabling Nitrogen-Containing Functional Group Installation into the Same. J Org Chem 2021; 86:15807-15817. [PMID: 34657438 DOI: 10.1021/acs.joc.1c01950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A C-C bond forming method was developed, whereby a furoxan ring is incorporated into various types of C-H bonds. The protocol not only offers a concise synthetic route to a variety of alkylated furoxan derivatives but also provides an efficient strategy for the insertion of various nitrogen-containing functional groups into C-H bonds via transformation of the resultant furoxan ring.
Collapse
Affiliation(s)
- Chenlu Dong
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Xufeng Zhao
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yuki Katsuragi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Hojin Kim
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Adsorption Method for the Remediation of Brilliant Green Dye Using Halloysite Nanotube: Isotherm, Kinetic and Modeling Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first-ever use of halloysite nanotube (HNT), a relatively low-cost nanomaterial abundantly available with minor toxicity for removing brilliant green dye from aqueous media, is reported. The factors affecting adsorption were studied by assessing the adsorption capacity, kinetics, and equilibrium thermodynamic properties. All the experiments were designed at a pH level of around 7. The Redlich-Peterson isotherm model fits best amongst the nine isotherm models studied. The kinetic studies data confirmed a pseudo model of the second order. Robotic investigations propose a rate-controlling advance being overwhelmed by intraparticle dispersion. The adsorbent features were interpreted using infrared spectroscopy and electron microscopy. Process optimization was carried out using Response Surface Methodology (RSM) through a dual section Fractional Factorial Experimental Design to contemplate the impact of boundaries on the course of adsorption. The examination of fluctuation (ANOVA) was utilized to consider the joined impact of the boundaries. The possibilities of the use of dye adsorbing HNT (“sludge”) for the fabrication of the composites using plastic waste are suggested.
Collapse
|
16
|
Degradation Efficiency and Kinetics Analysis of an Advanced Oxidation Process Utilizing Ozone, Hydrogen Peroxide and Persulfate to Degrade the Dye Rhodamine B. Catalysts 2021. [DOI: 10.3390/catal11080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the effectiveness of a rhodamine B (RhB) dye degradation process at a concentration of 20 mg/L in different advanced oxidation processes—H2O2/UV, O3/UV and PDS/UV—has been studied. The use of UV in a photo-assisted ozonation process (O3/UV) proved to be the most effective method of RhB decolorization (90% after 30 min at dye concentration of 100 mg/L). The addition of sulfate radical precursors (sodium persulfate, PDS) to the reaction environment did not give satisfactory effects (17% after 30 min), compared to the PDS/UV system (70% after 30 min). No rhodamine B decolorization was observed using hydrogen peroxide as a sole reagent, whereas an effect on the degree of RhB degradation was observed when UV rays strike the sample with H2O2 (33% after 30 min). The rhodamine B degradation process followed the pseudo-first-order kinetics model. The combined PDS/O3/UV process has shown 60% color removal after 30 min of reaction time at an initial dye concentration of 100 mg/L. A similar effectiveness was obtained by only applying ozone or UV-activated persulfate, but at a concentration 2–5 times lower (20 mg/L). The results indicated that the combined PDS/O3/UV process is a promising method for high RhB concentrations (50–100 mg/L) comparing to other alternative advanced oxidation processes.
Collapse
|
17
|
Macías-Vargas JA, Campos-Mañas MC, Agüera A, Sánchez Pérez JA, Ramírez-Zamora RM. Enhanced activated persulfate oxidation of ciprofloxacin using a low-grade titanium ore under sunlight: influence of the irradiation source on its transformation products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24008-24022. [PMID: 33415630 DOI: 10.1007/s11356-020-11564-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
In this work, the activated persulfate oxidation of ciprofloxacin (CIP) using a low-grade titanium ore under sunlight or simulated sunlight were conducted to analyze the CIP degradation efficiency and to identify the transformation products (TPs) generated during oxidation under both types of irradiation sources by using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). All advance oxidation process experiments were performed in a 2700-mL raceway reactor at a pH value of ~ 6.5 and an initial CIP concentration of 1 mg/L, during 90 min of reaction time. The control experiments carried out under simulated sunlight achieved a 97.7 ± 0.6% degradation efficiency, using 385 W/m2 of irradiation with an average temperature increase of 11.7 ± 0.6 °C. While, the experiments under sunlight reached a 91.2 ± 1.3% degradation efficiency, under an average irradiation value of 19.2 ± 0.3 W/m2 in October-November 2019 at hours between 11:00 am and 3:00 pm with an average temperature increase of 1.4 ± 0.8 °C. Mass spectrometry results indicated that 14 of the 108 possible TPs reported in the literature were detected. The calculated exact mass, measured accurate mass, and its characteristic diagnostic fragment ions were listed, and two new TPs were tentative identified. The TP generation analysis showed that some specific compounds were detected in different time intervals with kinetic variations depending on the irradiation used. Consequently, two CIP degradation pathways were proposed, since the type of irradiation determines the CIP degradation mechanism. Graphical abstract.
Collapse
Affiliation(s)
- José-Alberto Macías-Vargas
- Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, 04510, México City, Mexico
| | - Marina Celia Campos-Mañas
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120, Almería, Spain
| | - Ana Agüera
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120, Almería, Spain
| | - José Antonio Sánchez Pérez
- Solar Energy Research Centre (CIESOL), Joint Centre University of Almería-CIEMAT, Ctra. de Sacramento s/n, 04120, Almería, Spain
| | - Rosa-María Ramírez-Zamora
- Instituto de Ingeniería, Universidad Nacional Autónoma de México (UNAM), Alcaldía Coyoacán, 04510, México City, Mexico.
| |
Collapse
|
18
|
|
19
|
Ahmadi S, Rahdar A, Igwegbe CA, Mortazavi-Derazkola S, Banach AM, Rahdar S, Singh AK, Rodriguez-Couto S, Kyzas GZ. Praseodymium-doped cadmium tungstate (CdWO4) nanoparticles for dye degradation with sonocatalytic process. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114792] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Rahdar A, Rahdar S, Askari F, Ahmadi S, Shahraki H, Mohammadi L, Sankar Sivasankarapillai V, Kyzas GZ. Effectiveness of graphene quantum dot nanoparticles in the presence of hydrogen peroxide for the removal of ciprofloxacin from aqueous media: response surface methodology. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1807569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Somayeh Rahdar
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Faezeh Askari
- Department of Physics, University of Zabol, Zabol, Iran
| | - Shahin Ahmadi
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Hojat Shahraki
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Leili Mohammadi
- Department of Environmental Health, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, Kavala, Greece
| |
Collapse
|
21
|
New Sustainable Approach for the Production of Fe3O4/Graphene Oxide-Activated Persulfate System for Dye Removal in Real Wastewater. WATER 2020. [DOI: 10.3390/w12030733] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Persulfate (PS)-activated, iron-based heterogeneous catalysts have attracted significant attention as a potential advanced and sustainable water purification system. Herein, a novel Fe3O4 impregnated graphene oxide (Fe3O4@GO)-activated persulfate system (Fe3O4@GO+K2S2O8) was synthesized by following a sustainable protocol and was tested on real wastewater containing dye pollutants. In the presence of the PS-activated system, the degradation efficiency of Rhodamine B (RhB) was significantly increased to a level of ≈95% compared with that of Fe3O4 (≈25%). The influences of different operational parameters, including solution pH, persulfate dosage, and RhB concentration, were systemically evaluated. This system maintained its catalytic activity and durability with a negligible amount of iron leached during successive recirculation experiments. The degradation intermediates were further identified through reactive oxygen species (ROS) studies, where surface-bound SO4− was found to be dominant radical for RhB degradation. Moreover, the degradation mechanism of RhB in the Fe3O4@GO+K2S2O8 system was discussed. Finally, the results indicate that the persulfate-activated Fe3O4@GO catalyst provided an effective pathway for the degradation of dye pollutants in real wastewater treatment.
Collapse
|
22
|
Igwegbe CA, Mohmmadi L, Ahmadi S, Rahdar A, Khadkhodaiy D, Dehghani R, Rahdar S. Modeling of adsorption of Methylene Blue dye on Ho-CaWO 4 nanoparticles using Response Surface Methodology (RSM) and Artificial Neural Network (ANN) techniques. MethodsX 2019; 6:1779-1797. [PMID: 31453114 PMCID: PMC6702238 DOI: 10.1016/j.mex.2019.07.016] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/12/2019] [Indexed: 12/01/2022] Open
Abstract
The aim of this study is to evaluate the applicability of Ho-CaWO4 nanoparticles prepared using the hydrothermal method for the removal of Methylene Blue (MB) from aqueous solution using adsorption process. The effects of contact time, Ho-CaWO4 nanoparticles dose and initial MB concentration on the removal of MB were studied using the central composite design (CCD) method. Response Surface Methodology (RSM) and Artificial Neural Network (ANN) modeling techniques were applied to model the process and their performance and predictive capabilities of the response (removal efficiency) was also examined. The adsorption process was optimized using the RSM and the optimum conditions were determined. The process was also modelled using the adsorption isotherm and kinetic models. The ANN and RSM model showed adequate prediction of the response, with absolute average deviation (AAD) of 0.001 and 0.320 and root mean squared error (RMSE) of 0.119 and 0.993, respectively. The RSM model was found to be more acceptable since it has the lowest RMSE and AAD compared to the ANN model. Optimum MB removal of 71.17% was obtained at pH of 2.03, contact time of 15.16 min, Ho-CaWO4 nanoparticles dose of 1.91 g/L, and MB concentration of 100.65 mg/L. Maximum adsorption capacity (qm ) of 103.09 mg/g was obtained. The experimental data of MB adsorption on Ho-CaWO4 nanoparticles followed the Freundlich isotherm and pseudo-second-order kinetic models than the other models. It could be concluded that the prepared Ho-CaWO4 nanoparticles can be used efficiently for the removal of MB and also, the process can be optimized to maximize the removal of MB. •Synthesis and characterization of Ho-CaWO4 nanoparticles.•Modelling and optimization of Methylene Blue removal onto Ho-CaWO4 using Response Surface Methodology (RSM) and Artificial neural network (ANN).•Evaluation of the isotherm and kinetic parameters of the adsorption process.
Collapse
Affiliation(s)
| | - Leili Mohmmadi
- Department of Environmental Health, Zabol University of Medical Sciences, Zahedan, Iran
| | - Shahin Ahmadi
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P.O. Box. 35856-98613, Iran
| | - Danial Khadkhodaiy
- Department of Environmental Health, Zabol University of Medical Sciences, Zahedan, Iran
| | - Rahmin Dehghani
- Department of Environmental Health, Karman University of Medical Sciences, Karman, Iran
| | - Somayeh Rahdar
- Department of Environmental Health, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|