1
|
Naseralallah L, Koraysh S. Aprocitentan: a new emerging prospect in the pharmacotherapy of hypertension. Blood Press 2024; 33:2424824. [PMID: 39520722 DOI: 10.1080/08037051.2024.2424824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Resistant hypertension (RH) is linked to higher risks of cardiovascular events and there remains an unmet therapeutic need driven by pathophysiologic pathways unaddressed by guideline-recommended therapy. Whilst spironolactone is considered the preferred fourth-line therapy, its broad application is limited by its safety profile. Aprocitentan is a novel dual endothelin (ET) A and B receptors antagonist that has been recently approved by the FDA. OBJECTIVE This review aims to summarise the available evidence on the discovery, pharmacokinetic, pharmacodynamic, efficacy, and safety of aprocitentan in the pharmacotherapy of RH. METHODS We searched PubMed, Embase, and International Pharmaceutical Abstracts to identify relevant papers on aprocitentan use. Clinical trial registries were also searched. RESULTS Aprocitentan targets the ET pathway which remains unopposed by contemporary alternative therapies for RH. It differs from other ET receptor antagonists in its pharmacological profile, as it is eliminated independently of CYP450 or BCRP, making it less likely to cause drug-drug interactions. Current evidence demonstrates that compared to placebo, aprocitentan significantly reduces blood pressure (BP) as measured via unattended automated office BP and 24-hour ambulatory BP. The most frequently reported adverse effects were fluid retention/edema and anaemia. CONCLUSION Aprocitentan is a novel therapy for the management of RH that significantly reduces BP when compared to placebo. It delivers exciting prospects for future therapeutic options in the setting of RH and expands insights into its pathophysiology. However there is lack of data in relation to broader cardiovascular and renal protection, as well as its long-term safety profile.
Collapse
Affiliation(s)
| | - Somaya Koraysh
- Pharmacy Department, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
3
|
de la Sierra A, Oliveras A. [New therapeutic targets in hypertension]. Med Clin (Barc) 2024; 163:301-305. [PMID: 38849267 DOI: 10.1016/j.medcli.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024]
Abstract
Even though a large number of antihypertensive drugs are suitable for hypertension treatment, some new therapeutic targets are recently under development. Most are focused in the treatment of resistant hypertension, added to the drugs currently available for treating such condition. Others have specific particularities in their duration of action, which allows their use once per month or every six months and could become alternatives to the current antihypertensive treatment. Most interesting therapeutic targets are the renin-angiotensin-aldosterone system, through interference with the RNA of the angiotensinogen, the inhibition of brain aminopeptidase III, the inhibition of aldosterone synthase, and new non-steroidal aldosterone receptor antagonists. In addition, dual endothelin receptor antagonists or agonists of the NPR1 receptor, the main effector of natriuretic peptides are other new interesting therapeutic possibilities. In this paper, we review clinical data on the development of the most interesting molecules acting through these new therapeutic targets.
Collapse
Affiliation(s)
- Alejandro de la Sierra
- Unidad de Hipertensión, Servicio de Medicina Interna, Hospital Mútua Terrassa. Universidad de Barcelona, Barcelona, España.
| | - Anna Oliveras
- Unidad de Hipertensión, Servicio de Nefrología, Hospital del Mar, Barcelona, España
| |
Collapse
|
4
|
Ram CVS. A New Class of Drugs Approved in the United States for Hypertension: Endothelin Antagonists. Am J Med 2024; 137:795-798. [PMID: 38750711 DOI: 10.1016/j.amjmed.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024]
Affiliation(s)
- C Venkata S Ram
- Apollo Group of Hospitals, Hyderabad, India; University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
5
|
Dhillon S. Aprocitentan: First Approval. Drugs 2024; 84:841-847. [PMID: 38833193 DOI: 10.1007/s40265-024-02053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Aprocitentan (TRYVIO™) is a once-daily oral dual endothelin A (ETA) and B (ETB) receptor antagonist developed by Idorsia Pharmaceuticals for the treatment of hypertension. The endothelin pathway has been implicated in hypertension. Aprocitentan inhibits the binding of endothelin-1 to ETA and ETB receptors, thereby preventing its deleterious effects and lowering blood pressure. In March 2024, aprocitentan received its first approval in the USA for the treatment of hypertension in combination with other antihypertensive drugs, to lower blood pressure in adults who are not adequately controlled on other drugs. This article summarizes the milestones in the development of aprocitentan leading to this first approval for hypertension not adequately controlled on other drugs.
Collapse
Affiliation(s)
- Sohita Dhillon
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
6
|
McCartney F. March Industry News. Ther Deliv 2024; 15:561-566. [PMID: 38939920 PMCID: PMC11412147 DOI: 10.1080/20415990.2024.2365621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024] Open
Affiliation(s)
- Fiona McCartney
- Research Scientist, University College Dublin, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
7
|
Liang H, Ren Y, Huang Y, Xie X, Zhang M. Treatment of diabetic retinopathy with herbs for tonifying kidney and activating blood circulation: A review of pharmacological studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118078. [PMID: 38513781 DOI: 10.1016/j.jep.2024.118078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes. Chinese medicine believes that kidney deficiency and blood stasis are significant pathogenesis of DR. A characteristic therapeutic approach for this pathogenesis is the kidney-tonifying and blood-activating method. By literature retrieval from several databases, we methodically summarized the commonly used kidney-tonifying and blood-activating herbs for treating DR, including Lycii Fructus, Rehmanniane Radix Praeparata, and Corni Fructus with the function of nourishing kidney; Salvia Miltiorrhizae Radix et Rhizoma with the function of enhancing blood circulation; Rehmanniae Radix with the function of nourishing kidney yin; and Astragali Radix with the function of tonifying qi. It has been demonstrated that these Chinese herbs described above, by tonifying the kidney and activating blood circulation, significantly improve the course of DR. AIM OF THE STUDY Through literature research, to gain a thorough comprehension of the pathogenesis of DR. Simultaneously, through the traditional application analysis, modern pharmacology research and network pharmacology analysis of kidney-tonifying and blood-activating herbs, to review the effectiveness and advantages of kidney-tonifying and blood-activating herbs in treating DR comprehensively. MATERIALS AND METHODS PubMed, the China National Knowledge Infrastructure (CNKI), and Wanfang Data were used to filter the most popular herbs for tonifying kidney and activating blood in the treatment of DR. The search terms were "diabetic retinopathy" and "tonifying kidney and activating blood". Mostly from 2000 to 2023. Network pharmacology was applied to examine the key active components and forecast the mechanisms of kidney-tonifying and blood-activating herbs in the treatment of DR. RESULTS Kidney deficiency and blood stasis are the pathogenesis of DR, and the pathogenesis is linked to oxidative stress, inflammation, hypoxia, and hyperglycemia. Scientific data and network pharmacology analysis have demonstrated the benefit of tonifying kidney and activating blood herbs in treating DR through several channels, multiple components, and multiple targets. CONCLUSIONS This review first presents useful information for subsequent research into the material foundation and pharmacodynamics of herbs for tonifying kidney and activating blood, and offers fresh insights into the treatment of DR.
Collapse
Affiliation(s)
- Huan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuxia Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xuejun Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Mei Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
8
|
Flack JM, Buhnerkempe MG, Moore KT. Resistant Hypertension: Disease Burden and Emerging Treatment Options. Curr Hypertens Rep 2024; 26:183-199. [PMID: 38363454 PMCID: PMC11533979 DOI: 10.1007/s11906-023-01282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW To define resistant hypertension (RHT), review its pathophysiology and disease burden, identify barriers to effective hypertension management, and to highlight emerging treatment options. RECENT FINDINGS RHT is defined as uncontrolled blood pressure (BP) ≥ 130/80 mm Hg despite concurrent prescription of ≥ 3 or ≥ 4 antihypertensive drugs in different classes or controlled BP despite prescription of ≥ to 4 drugs, at maximally tolerated doses, including a diuretic. BP is regulated by a complex interplay between the renin-angiotensin-aldosterone system, the sympathetic nervous system, the endothelin system, natriuretic peptides, the arterial vasculature, and the immune system; disruption of any of these can increase BP. RHT is disproportionately manifest in African Americans, older patients, and those with diabetes and/or chronic kidney disease (CKD). Amongst drug-treated hypertensives, only one-quarter have been treated intensively enough (prescribed > 2 drugs) to be considered for this diagnosis. New treatment strategies aimed at novel therapeutic targets include inhibition of sodium-glucose cotransporter 2, aminopeptidase A, aldosterone synthesis, phosphodiesterase 5, xanthine oxidase, and dopamine beta-hydroxylase, as well as soluble guanylate cyclase stimulation, nonsteroidal mineralocorticoid receptor antagonism, and dual endothelin receptor antagonism. The burden of RHT remains high. Better use of currently approved therapies and integrating emerging therapies are welcome additions to the therapeutic armamentarium for addressing needs in high-risk aTRH patients.
Collapse
Affiliation(s)
- John M Flack
- Department of Medicine, Division of General Internal Medicine, Hypertension Section, Southern Illinois University, Southern Illinois University School of Medicine, 801 North Rutledge Street, Carbondale, IL, 62702, USA.
| | - Michael G Buhnerkempe
- Department of Medicine and the Center for Clinical Research, Southern Illinois University, Carbondale, IL, USA
| | | |
Collapse
|
9
|
Mazzotta E, Grants I, Villalobos-Hernandez E, Chaudhuri S, McClain JL, Seguella L, Kendig DM, Blakeney BA, Murthy SK, Schneider R, Leven P, Wehner S, Harzman A, Grider JR, Gulbransen BD, Christofi FL. BQ788 reveals glial ET B receptor modulation of neuronal cholinergic and nitrergic pathways to inhibit intestinal motility: Linked to postoperative ileus. Br J Pharmacol 2023; 180:2550-2576. [PMID: 37198101 PMCID: PMC11085045 DOI: 10.1111/bph.16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND AND PURPOSE ET-1 signalling modulates intestinal motility and inflammation, but the role of ET-1/ETB receptor signalling is poorly understood. Enteric glia modulate normal motility and inflammation. We investigated whether glial ETB signalling regulates neural-motor pathways of intestinal motility and inflammation. EXPERIMENTAL APPROACH We studied ETB signalling using: ETB drugs (ET-1, SaTX, BQ788), activity-dependent stimulation of neurons (high K+ -depolarization, EFS), gliotoxins, Tg (Ednrb-EGFP)EP59Gsat/Mmucd mice, cell-specific mRNA in Sox10CreERT2 ;Rpl22-HAflx or ChATCre ;Rpl22-HAflx mice, Sox10CreERT2 ::GCaMP5g-tdT, Wnt1Cre2 ::GCaMP5g-tdT mice, muscle tension recordings, fluid-induced peristalsis, ET-1 expression, qPCR, western blots, 3-D LSM-immunofluorescence co-labelling studies in LMMP-CM and a postoperative ileus (POI) model of intestinal inflammation. KEY RESULTS In the muscularis externa ETB receptor is expressed exclusively in glia. ET-1 is expressed in RiboTag (ChAT)-neurons, isolated ganglia and intra-ganglionic varicose-nerve fibres co-labelled with peripherin or SP. ET-1 release provides activity-dependent glial ETB receptor modulation of Ca2+ waves in neural evoked glial responses. BQ788 reveals amplification of glial and neuronal Ca2+ responses and excitatory cholinergic contractions, sensitive to L-NAME. Gliotoxins disrupt SaTX-induced glial-Ca2+ waves and prevent BQ788 amplification of contractions. The ETB receptor is linked to inhibition of contractions and peristalsis. Inflammation causes glial ETB up-regulation, SaTX-hypersensitivity and glial amplification of ETB signalling. In vivo BQ788 (i.p., 1 mg·kg-1 ) attenuates intestinal inflammation in POI. CONCLUSION AND IMPLICATIONS Enteric glial ET-1/ETB signalling provides dual modulation of neural-motor circuits to inhibit motility. It inhibits excitatory cholinergic and stimulates inhibitory nitrergic motor pathways. Amplification of glial ETB receptors is linked to muscularis externa inflammation and possibly pathogenic mechanisms of POI.
Collapse
Affiliation(s)
- Elvio Mazzotta
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Iveta Grants
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Samhita Chaudhuri
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - Jonathon L McClain
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Luisa Seguella
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Derek M Kendig
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Bryan A Blakeney
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Srinivasa K Murthy
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | - Patrick Leven
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Alan Harzman
- Department of GI Surgery, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - John R Grider
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Brian D Gulbransen
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | - Fedias L Christofi
- Department of Anesthesiology, Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
10
|
Kanbay M, Copur S, Tanriover C, Ucku D, Laffin L. Future treatments in hypertension: Can we meet the unmet needs of patients? Eur J Intern Med 2023; 115:18-28. [PMID: 37330317 DOI: 10.1016/j.ejim.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of arterial hypertension is approximately 47% in the United States and 55% in Europe. Multiple different medical therapies are used to treat hypertension including diuretics, beta blockers, calcium channel blockers, angiotensin receptor blockers, angiotensin converting enzyme inhibitors, alpha blockers, central acting alpha receptor agonists, neprilysin inhibitors and vasodilators. However, despite the numerous number of medications, the prevalence of hypertension is on the rise, a considerable proportion of the hypertensive population is resistant to these therapeutic modalities and a definitive cure is not possible with the current treatment approaches. Therefore, there is a need for novel therapeutic strategies to provide better treatment and control of hypertension. In this review, our aim is to describe the latest developments in the treatment of hypertension including novel medication classes, gene therapies and RNA-based modalities.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Luke Laffin
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
11
|
Novel Dual Endothelin Inhibitors in the Management of Resistant Hypertension. Life (Basel) 2023; 13:life13030806. [PMID: 36983961 PMCID: PMC10051756 DOI: 10.3390/life13030806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Resistant hypertension (RH) is defined as the failure to achieve blood pressure control despite using triple combination therapy with a renin-angiotensin system inhibitor (RAS-i), a calcium antagonist, and a diuretic. The endothelin (ET) system is implicated in the regulation of vascular tone, primarily through vasoconstriction, intervenes in cardiac contractility with inotropic effects, and contributes to water and sodium renal reabsorption. ET inhibitors, currently approved for the treatment of pulmonary hypertension, seem to be also useful for essential hypertension and RH as well. Studies into the development of new dual ET inhibitors, which inhibit both type A and B ET (ETA and ETB) receptors, present initial results of managing RH. Aprocitentan (ACT-132577) is a novel, orally active and well tolerated dual ET receptor antagonist, which has been examined in several experimental studies and clinical trials with promising results for RH control. The recent publication of the large PRECISION study in The Lancet journal provides further reassurance regarding the efficacy and safety of aprocitentan for RH, with the aim of overcoming unmet needs in the management of this difficult group of patients.
Collapse
|
12
|
Niranjan PK, Bahadur S. Recent Developments in Drug Targets and Combination Therapy for the Clinical Management of Hypertension. Cardiovasc Hematol Disord Drug Targets 2023; 23:226-245. [PMID: 38038000 DOI: 10.2174/011871529x278907231120053559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Raised blood pressure is the most common complication worldwide that may lead to atherosclerosis and ischemic heart disease. Unhealthy lifestyles, smoking, alcohol consumption, junk food, and genetic disorders are some of the causes of hypertension. To treat this condition, numerous antihypertensive medications are available, either alone or in combination, that work via various mechanisms of action. Combinational therapy provides a certain advantage over monotherapy in the sense that it acts in multi mechanism mode and minimal drug amount is required to elicit the desired therapeutic effect. Such therapy is given to patients with systolic blood pressure greater than 20 mmHg and/or diastolic blood pressure exceeding 10 mmHg beyond the normal range, as well as those suffering from severe cardiovascular disease. The selection of antihypertensive medications, such as calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and low-dose diuretics, hinges on their ability to manage blood pressure effectively and reduce cardiovascular disease risks. This review provides insights into the diverse monotherapy and combination therapy approaches used for elevated blood pressure management. In addition, it offers an analysis of combination therapy versus monotherapy and discusses the current status of these therapies, from researchbased findings to clinical trials.
Collapse
Affiliation(s)
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
13
|
Lee A. Many drugs are available for hypertension, with more in development. DRUGS & THERAPY PERSPECTIVES 2022. [DOI: 10.1007/s40267-022-00951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhao J, Wang Q, Deng X, Qian J, Tian Z, Liu Y, Li M, Zeng X. The treatment strategy of connective tissue disease associated pulmonary arterial hypertension: Evolving into the future. Pharmacol Ther 2022; 239:108192. [DOI: 10.1016/j.pharmthera.2022.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
|
15
|
Salvador VD, Bakris GL. Novel antihypertensive agents for resistant hypertension: what does the future hold? Hypertens Res 2022; 45:1918-1928. [PMID: 36167808 DOI: 10.1038/s41440-022-01025-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022]
Abstract
Finding complementary compelling novel therapeutic agents for better control of blood pressure in people with resistant hypertension is moving into unchartered territory. The latest therapeutic developments explore approaches in the clinical arena that were either not examined or could only be examined in animal models two decades ago. Four main mechanisms have now been explored and operationalized in drug development: (a) mineralocorticoid receptor blockade using a nonsteroidal structure with many fewer side effects, (b) an aminopeptidase A inhibitor that has central effects on vasopressin, (c) a combined endothelin A and B receptor blocker and (d) an aldosterone synthase inhibitor devoid of glucocorticoid activity. All these agents are either completing Phase II development and starting Phase III or are involved in the ongoing recruitment of Phase III trials. Additionally, novel agents use antisense inhibition to block angiotensinogen development in the liver. These agents are discussed only for completeness, as they are still in Phase II trial development. Last, another agent that was initially being developed as an antihypertensive and once the data were reviewed by the company clearly showed efficacy as a heart failure agent was sacubitril/valsartan, which was ultimately approved. However, there are some discussions about reinvigorating the quest for an indication for hypertension, although no such steps have been formally initiated.
Collapse
Affiliation(s)
- Vincent D Salvador
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA
| | - George L Bakris
- Department of Medicine, Am Heart Assoc. Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, IL, USA.
| |
Collapse
|
16
|
Höcht C, Allo MA, Polizio AH, Morettón MA, Carranza A, Chiappetta DA, Choi MR. New and developing pharmacotherapies for hypertension. Expert Rev Cardiovasc Ther 2022; 20:647-666. [PMID: 35880547 DOI: 10.1080/14779072.2022.2105204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Despite the significant contribution of hypertension to the global burden of disease, disease control remains poor worldwide. Considering this unmet clinical need, several new antihypertensive drugs with novel mechanisms of action are under development. AREAS COVERED The present review summarizes the recent advances in the development of emerging pharmacological agents for the management of hypertension. The latest technological innovations in the design of optimized formulations of available antihypertensive drugs and the potential role of the modification of intestinal microbiota to improve blood pressure (BP) control are also covered. EXPERT OPINION Significant efforts have been made to develop new antihypertensive agents with novel actions that target the main mechanisms involved in resistant hypertension. Sacubitril/valsartan may emerge as a potential first-line drug due to its superiority over renin angiotensin system inhibitors, and SGLT2 inhibitors can reduce BP in difficult-to-control hypertensive patients with type 2 diabetes. In addition, firibastat and aprocitentan may expand the therapeutic options for resistant hypertension by novel mechanism of actions. Since gut dysbiosis not only leads to hypertension but also causes direct target organ damage, prebiotics and probiotics could represent a potential strategy to prevent or reduce the development of hypertension and to contribute to BP control.
Collapse
Affiliation(s)
- Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Miguel A Allo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Ariel Héctor Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab
| | - Marcela A Morettón
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Buenos Aires, Argentinaa.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae
| | - Diego A Chiappetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Buenos Aires, Argentinab.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Buenos Aires, Argentinac.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo Roberto Choi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentinae.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Buenos Aires, Argentina f
| |
Collapse
|
17
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
18
|
Advances in the Treatment Strategies in Hypertension: Present and Future. J Cardiovasc Dev Dis 2022; 9:jcdd9030072. [PMID: 35323620 PMCID: PMC8949859 DOI: 10.3390/jcdd9030072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the most frequent chronic and non-communicable disease all over the world, with about 1.5 billion affected individuals worldwide. Its impact is currently growing, particularly in low-income countries. Even in high-income countries, hypertension remains largely underdiagnosed and undertreated, with consequent low rates of blood pressure (BP) control. Notwithstanding the large number of clinical observational studies and randomized trials over the past four decades, it is sad to note that in the last few years there has been an impressive paucity of innovative studies. Research focused on BP mechanisms and novel antihypertensive drugs is slowing dramatically. The present review discusses some advances in the management of hypertensive patients, and could play a clinical role in the years to come. First, digital/health technology is expected to be increasingly used, although some crucial points remain (development of non-intrusive and clinically validated devices for ambulatory BP measurement, robust storing systems enabling rapid analysis of accrued data, physician-patient interactions, etc.). Second, several areas should be better outlined with regard to BP diagnosis and treatment targets. Third, from a therapeutic standpoint, existing antihypertensive drugs, which are generally effective and well tolerated, should be better used by exploiting available and novel free and fixed combinations. In particular, spironolactone and other mineral-corticoid receptor antagonists should be used more frequently to improve BP control. In particular, some drugs initially developed for conditions different from hypertension including heart failure and diabetes have demonstrated to lower BP significantly and should therefore be considered. Finally, renal artery denervation is another procedure that has proven effective in the management of hypertension.
Collapse
|
19
|
Current and Emerging Classes of Pharmacological Agents for the Management of Hypertension. Am J Cardiovasc Drugs 2022; 22:271-285. [PMID: 34878631 PMCID: PMC8651502 DOI: 10.1007/s40256-021-00510-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease accounts for more than 17 million deaths globally every year, of which complications of hypertension account for 9.4 million deaths worldwide. Early detection and management of hypertension can prevent costly interventions, including dialysis and cardiac surgery. Non-pharmacological approaches for managing hypertension commonly involve lifestyle modification, including exercise and dietary regulations such as reducing salt and fluid intake; however, a majority of patients will eventually require antihypertensive medications. In 2020, the International Society of Hypertension published worldwide guidelines in its efforts to reduce the global prevalence of raised blood pressure (BP) in adults aged 18 years or over. Currently, several classes of medications are used to control hypertension, either as mono- or combination therapy depending on the disease severity. These drug classes include those that target the renin-angiotensin-aldosterone system (RAAS) and adrenergic receptors, calcium channel blockers, diuretics and vasodilators. While some of these classes of medications have shown significant benefits in controlling BP and reducing cardiovascular mortality, the prevalence of hypertension remains high. Significant efforts have been made in developing new classes of drugs that lower BP; these medications exert their therapeutic benefits through different pathways and mechanism of actions. With several of these emerging classes in phase III clinical trials, it is hoped that the discovery of these novel therapeutic avenues will aid in reducing the global burden of hypertension.
Collapse
|