1
|
Grasso M, Fidilio A, L’Episcopo F, Recupero M, Barone C, Bacalini MG, Benatti C, Giambirtone MC, Caruso G, Greco D, Di Nuovo S, Romano C, Ferri R, Buono S, Cuello AC, Blom JMC, Tascedda F, Piazza PV, De La Torre R, Caraci F. Low TGF-β1 plasma levels are associated with cognitive decline in Down syndrome. Front Pharmacol 2024; 15:1379965. [PMID: 38576478 PMCID: PMC10991739 DOI: 10.3389/fphar.2024.1379965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Almost all individuals with Down's syndrome (DS) show the characteristic neuropathological features of Alzheimer's disease (AD) by the age of 40, yet not every individual with DS experiences symptoms of AD later in life. Similar to neurotypical developing subjects, AD in people with DS lasts for a long preclinical phase in which biomarkers follow a predictable order of changes. Hence, a prolonged asymptomatic period precedes the onset of dementia, underscoring the importance of identifying new biomarkers for the early detection and monitoring of cognitive decline in individuals with DS. Blood-based biomarkers may offer an alternative non-invasive strategy for the detection of peripheral biological alterations paralleling nervous system pathology in an early phase of the AD continuum. In the last few years, a strong neurobiological link has been demonstrated between the deficit of transforming growth factor-β1 (TGF-β1) levels, an anti-inflammatory cytokine endowed with neuroprotective activity, and early pro-inflammatory processes in the AD brain. In this clinical prospective observational study, we found significant lower plasma TGF-β1 concentrations at the first neuropsychological evaluation (baseline = T0) both in young adult DS individuals (19-35 years) and older DS subjects without AD (35-60 years) compared to age- and sex-matched healthy controls. Interestingly, we found that the lower TGF-β1 plasma concentrations at T0 were strongly correlated with the following cognitive decline at 12 months. In addition, in young individuals with DS, we found, for the first time, a negative correlation between low TGF-β1 concentrations and high TNF-α plasma concentrations, a pro-inflammatory cytokine that is known to be associated with cognitive impairment in DS individuals with AD. Finally, adopting an ex vivo approach, we found that TGF-β1 concentrations were reduced in parallel both in the plasma and in the peripheral blood mononuclear cells (PBMCs) of DS subjects, and interestingly, therapeutic concentrations of fluoxetine (FLX) applied to cultured PBMCs (1 µM for 24 h) were able to rescue TGF-β1 concentrations in the culture media from DS PBMCs, suggesting that FLX, a selective serotonin reuptake inhibitor (SSRI) endowed with neuroprotective activity, might rescue TGF-β1 concentrations in DS subjects at higher risk to develop cognitive decline.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cristina Benatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Giuseppe Caruso
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Santo Di Nuovo
- Department of Educational Sciences, University of Catania, Catania, Italy
| | - Corrado Romano
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | | | - Johanna M. C. Blom
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Tascedda
- Department of Life Sciences and Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Rafael De La Torre
- Integrative Pharmacology and Systems Neurosciences Research Group, Neurosciences Research Program, Hospital del Mar Research Institute /HMRI, Barcelona, Spain
| | - Filippo Caraci
- Oasi Research Institute-IRCCS, Troina, Italy
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| |
Collapse
|
2
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
3
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
4
|
Do Carmo S, Kannel B, Cuello AC. Nerve Growth Factor Compromise in Down Syndrome. Front Aging Neurosci 2021; 13:719507. [PMID: 34434101 PMCID: PMC8381049 DOI: 10.3389/fnagi.2021.719507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The basal forebrain cholinergic system relies on trophic support by nerve growth factor (NGF) to maintain its phenotype and function. In Alzheimer's disease (AD), basal forebrain cholinergic neurons (BFCNs) undergo progressive atrophy, suggesting a deficit in NGF trophic support. Within the central nervous system, NGF maturation and degradation are tightly regulated by an activity-dependent metabolic cascade. Here, we present a brief overview of the characteristics of Alzheimer's pathology in Down syndrome (DS) with an emphasis on this NGF metabolic pathway's disruption during the evolving Alzheimer's pathology. Such NGF dysmetabolism is well-established in Alzheimer's brains with advanced pathology and has been observed in mild cognitive impairment (MCI) and non-demented individuals with elevated brain amyloid levels. As individuals with DS inexorably develop AD, we then review findings that support the existence of a similar NGF dysmetabolism in DS coinciding with atrophy of the basal forebrain cholinergic system. Lastly, we discuss the potential of NGF-related biomarkers as indicators of an evolving Alzheimer's pathology in DS.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Benjamin Kannel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
5
|
Rafii MS, Ances BM, Schupf N, Krinsky‐McHale SJ, Mapstone M, Silverman W, Lott I, Klunk W, Head E, Christian B, Lai F, Rosas HD, Zaman S, Petersen ME, Strydom A, Fortea J, Handen B, O'Bryant S. The AT(N) framework for Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12062. [PMID: 33134477 PMCID: PMC7588820 DOI: 10.1002/dad2.12062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
The National Institute on Aging in conjunction with the Alzheimer's Association (NIA-AA) recently proposed a biological framework for defining the Alzheimer's disease (AD) continuum. This new framework is based upon the key AD biomarkers (amyloid, tau, neurodegeneration, AT[N]) instead of clinical symptoms and represents the latest understanding that the pathological processes underlying AD begin decades before the manifestation of symptoms. By using these same biomarkers, individuals with Down syndrome (DS), who are genetically predisposed to developing AD, can also be placed more precisely along the AD continuum. The A/T(N) framework is therefore thought to provide an objective manner by which to select and enrich samples for clinical trials. This new framework is highly flexible and allows the addition of newly confirmed AD biomarkers into the existing AT(N) groups. As biomarkers for other pathological processes are validated, they can also be added to the AT(N) classification scheme, which will allow for better characterization and staging of AD in DS. These biological classifications can then be merged with clinical staging for an examination of factors that impact the biological and clinical progression of the disease. Here, we leverage previously published guidelines for the AT(N) framework to generate such a plan for AD among adults with DS.
Collapse
Affiliation(s)
- Michael S. Rafii
- Alzheimer's Therapeutic Research Institute (ATRI)Keck School of MedicineUniversity of Southern CaliforniaSan DiegoCaliforniaUSA
| | - Beau M. Ances
- Center for Advanced Medicine NeuroscienceWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain/G.H. Sergievsky CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
- Department of NeurologyNeurological Institute of New York, Columbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Sharon J. Krinsky‐McHale
- Department of PsychologyNYS Institute for Basic Research in Developmental DisabilitiesStaten IslandNew YorkUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Wayne Silverman
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Ira Lott
- Department of PediatricsSchool of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - William Klunk
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Elizabeth Head
- Department of PathologyGillespie Neuroscience Research Facility, University of CaliforniaIrvineCaliforniaUSA
| | - Brad Christian
- Department of Medical Physics and PsychiatryUniversity of Wisconsin MadisonMadisonWisconsinUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - H. Diana Rosas
- Departments of Neurology and RadiologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMassachusettsUSA
| | - Shahid Zaman
- Department of PsychiatrySchool of Clinical MedicineUniversity of CambridgeCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustFulbourn HospitalCambridgeUK
| | - Melissa E. Petersen
- Department of Family Medicine and Institute for Translational ResearchUniversity of North Texas Health Science CenterFort WorthTexasUSA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental SciencesInstitute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Juan Fortea
- Sant Pau Memory UnitDepartment of NeurologyHospital de la Santa Creu i Sant PauBiomedical Research Institute Sant PauUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Benjamin Handen
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Sid O'Bryant
- Institute for Translational Research and Department of Pharmacology and NeuroscienceUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
6
|
Henson RL, Doran E, Christian BT, Handen BL, Klunk WE, Lai F, Lee JH, Rosas HD, Schupf N, Zaman SH, Lott IT, Fagan AM. Cerebrospinal fluid biomarkers of Alzheimer's disease in a cohort of adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12057. [PMID: 32671183 PMCID: PMC7346867 DOI: 10.1002/dad2.12057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Virtually all individuals with Down syndrome (DS) will develop Alzheimer's disease (AD) pathology by age 40. Cerebrospinal fluid (CSF) biomarkers have characterized AD pathology in cohorts of late-onset AD (LOAD) and autosomal-dominant AD (ADAD). Few studies have evaluated such biomarkers in adults with DS. METHODS CSF concentrations of amyloid beta (Aβ)40, Aβ42, tau, phospho-tau181 (p-tau), neurofilament light chain (NfL), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40), alpha synuclein (αSyn), neurogranin (Ng), synaptosomal-associated protein 25 (SNAP-25), and visinin-like protein 1 (VILIP-1) were assessed in CSF from 44 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome study. Biomarker levels were evaluated by cognitive status, age, and apolipoprotein E gene (APOE) ε4 carrier status. RESULTS Biomarker abnormalities indicative of amyloid deposition, tauopathy, neurodegeneration, synaptic dysfunction, and neuroinflammation were associated with increased cognitive impairment. Age and APOE ε4 status influenced some biomarkers. DISCUSSION The profile of many established and emerging CSF biomarkers of AD in a cohort of adults with DS was similar to that reported in LOAD and ADAD, while some differences were observed.
Collapse
Affiliation(s)
- Rachel L. Henson
- Department of NeurologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Charles F. and Joanne Knight Alzheimer Disease Research CenterSt. LouisMissouriUSA
| | - Eric Doran
- Department of PediatricsUniversity of California‐Irvine School of MedicineIrvineCaliforniaUSA
| | - Bradley T. Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph H. Lee
- Gertrude H. Sergievsky CenterTaub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Departments of Epidemiology and NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - H. Diana Rosas
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Nicole Schupf
- Gertrude H. Sergievsky CenterTaub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Departments of Epidemiology and NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | - Ira T. Lott
- Department of PediatricsUniversity of California‐Irvine School of MedicineIrvineCaliforniaUSA
| | - Anne M. Fagan
- Department of NeurologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Charles F. and Joanne Knight Alzheimer Disease Research CenterSt. LouisMissouriUSA
| |
Collapse
|
7
|
Abstract
Experimental work regarding corrective actions on chromosomes and genes, and control of gene products is yielding promising results. It opens the way to advances in dealing with the etiological aspects of Down syndrome and may lead to important changes in the life of individuals affected with this condition. A small number of molecules are being investigated in pharmacological research that may have positive effects on intellectual functioning. Studies of the pathological consequences of the amyloid cascade and the TAU pathology in the etiology of Alzheimer disease (AD), which is more frequent and occuring earlier in life in persons with Down syndrome (DS), are presented. The search for biological markers of AD and ways for constrasting its early manifestations are also discussed.
Collapse
Affiliation(s)
- Jean A. Rondal
- University of Liège, Cognitive Sciences, Building 32, Sart Tilman, Liège 4000, Belgium
| |
Collapse
|
8
|
In-vivo anterior segment OCT imaging provides unique insight into cerulean blue-dot opacities and cataracts in Down syndrome. Sci Rep 2020; 10:10031. [PMID: 32572106 PMCID: PMC7308272 DOI: 10.1038/s41598-020-66642-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/21/2020] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS) is frequently associated with cataract, but there remains scant information about DS cataract morphology. Supra-nuclear cataracts in DS have been proposed as indicative of beta-amyloid (Aβ) aggregation and thus potential biomarkers for Alzheimer’s (AD). This study employed anterior segment OCT (AS-OCT) and slit-lamp (SL) photography to image the crystalline lens in DS, compared with adult controls. Lens images were obtained post-dilation. Using MATLAB, AS-OCT images were analysed and lens opacities calculated as pixel intensity and area ratios. SL images were classified using LOCS III. Subjects were n = 28 DS (mean ± SD 24.1 ± 14.3years), and n = 36 controls (54.0 ± 3.4years). For the DS group, AS-OCT imaging revealed the frequent presence of small dot opacities (27 eyes, 50%) in the cortex and nucleus of the lens, covering an area ranging from 0.2–14%. There was no relation with age or visual acuity and these dot opacities (p > 0.5) and they were not present in any control lenses. However, their location and morphology does not coincide with previous reports linking these opacities with Aβ accumulation and AD. Four participants (14%) in the DS group had clinically significant age-related cataracts, but there was no evidence of early onset of age-related cataracts in DS.
Collapse
|
9
|
Fang WQ, Hwu WL, Chien YH, Yang SY, Chieh JJ, Chang LM, Huang AC, Lee NC, Chiu MJ. Composite Scores of Plasma Tau and β-Amyloids Correlate with Dementia in Down Syndrome. ACS Chem Neurosci 2020; 11:191-196. [PMID: 31799825 DOI: 10.1021/acschemneuro.9b00585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dementia frequently occurs in Down syndrome (DS) patients, and early intervention is important in its management. We have previously demonstrated a positive correlation of plasma β-amyloid Aβ42 levels and negative correlations of Aβ40 and tau levels with dementia in DS. In this study, we examined more cases and constructed composite scores with both tau and amyloids to correlate with dementia in DS. Plasma Aβ42, Aβ40, and tau proteins were measured by an immunomagnetic reduction assay in DS patients. Data were randomly and repeatedly split into training and validating sets, and logistic regression was applied to calculate the area under the curve (AUC) for each biomarker. A total of 73 DS patients (among them, 23 had neurodegeneration) and 77 controls were recruited. In DS patients without dementia, plasma Aβ40 and tau levels were highly elevated, but Aβ42 levels were lower than those of the healthy controls. DS patients with dementia, compared with DS patients with no dementia, had a large decline in Aβ40 and tau but a rise in Aβ42. For biomarker scores correlating with dementia, Aβ40 revealed an AUC of 0.912; the composite score of Aβ40 × tau revealed an AUC of 0.953; and a combined composite score of 0.1 for Aβ40 × Tau +0.9 Tau × Aβ40/Aβ42 achieved the highest AUC of 0.965. Therefore, composite biomarker scores including both plasma tau and β-amyloid levels correlate with dementia in DS better than using individual biomarker scores. The pattern of tau decline and Aβ42 rise in DS patients with dementia are also different from previous findings in Alzheimer's disease.
Collapse
Affiliation(s)
- Wei-Quan Fang
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Wuh-Liang Hwu
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yin-Hsiu Chien
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | | | - Jen-Jie Chieh
- Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan
| | - Lih-Maan Chang
- Department of Clinical Psychology, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan
| | - Ai-Chu Huang
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ni-Chung Lee
- Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Psychology, National Taiwan University, Taipei 106, Taiwan
- Graduate Institute of Biomedical Engineering and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
10
|
Alhajraf F, Ness D, Hye A, Strydom A. Plasma amyloid and tau as dementia biomarkers in Down syndrome: Systematic review and meta-analyses. Dev Neurobiol 2019; 79:684-698. [PMID: 31389176 PMCID: PMC6790908 DOI: 10.1002/dneu.22715] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Individuals with Down syndrome (DS) are at high risk of developing Alzheimer's disease (AD). Discovering reliable biomarkers which could facilitate early AD diagnosis and be used to predict/monitor disease course would be extremely valuable. To examine if analytes in blood related to amyloid plaques may constitute such biomarkers, we conducted meta‐analyses of studies comparing plasma amyloid beta (Aβ) levels between DS individuals and controls, and between DS individuals with and without dementia. PubMed, Embase, and Google Scholar were searched for studies investigating the relationship between Aβ plasma concentrations and dementia in DS and 10 studies collectively comprising >1,600 adults, including >1,400 individuals with DS, were included. RevMan 5.3 was used to perform meta‐analyses. Meta‐analyses showed higher plasma Aβ40 (SMD = 1.79, 95% CI [1.14, 2.44], Z = 5.40, p < .00001) and plasma Aβ42 levels (SMD = 1.41, 95% CI [1.15, 1.68], Z = 10.46, p < .00001) in DS individuals than controls, and revealed that DS individuals with dementia had higher plasma Aβ40 levels (SMD = 0.23, 95% CI [0.05, 0.41], Z = 2.54, p = .01) and lower Aβ42/Aβ40 ratios (SMD = −0.33, 95% CI [−0.63, −0.03], Z = 2.15, p = .03) than DS individuals without dementia. Our results indicate that plasma Aβ40 levels may constitute a promising biomarker for predicting dementia status in individuals with DS. Further investigations using new ultra‐sensitive assays are required to obtain more reliable results and to investigate to what extent these results may be generalizable beyond the DS population.
Collapse
Affiliation(s)
- Falah Alhajraf
- UCL Queen Square Institute of Neurology, University College London, London, UK.,Al Amiri Hospital, Kuwait City, State of Kuwait
| | - Deborah Ness
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| | - Abdul Hye
- The Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The LonDownS Consortium (London Down Syndrome Consortium), London, UK
| |
Collapse
|
11
|
McLachlan DRC, Bergeron C, Alexandrov PN, Walsh WJ, Pogue AI, Percy ME, Kruck TPA, Fang Z, Sharfman NM, Jaber V, Zhao Y, Li W, Lukiw WJ. Aluminum in Neurological and Neurodegenerative Disease. Mol Neurobiol 2019; 56:1531-1538. [PMID: 30706368 PMCID: PMC6402994 DOI: 10.1007/s12035-018-1441-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/30/2022]
Abstract
With continuing cooperation from 18 domestic and international brain banks over the last 36 years, we have analyzed the aluminum content of the temporal lobe neocortex of 511 high-quality human female brain samples from 16 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Temporal lobes (Brodmann areas A20-A22) were selected for analysis because of their availability and their central role in massive information-processing operations including efferent-signal integration, cognition, and memory formation. We used the analytical technique of (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) preliminary analysis from the advanced photon source (APS) hard X-ray beam (7 GeV) fluorescence raster-scanning (XRFR) spectroscopy device (undulator beam line 2-ID-E) at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. Neurological diseases examined were Alzheimer's disease (AD; N = 186), ataxia Friedreich's type (AFT; N = 6), amyotrophic lateral sclerosis (ALS; N = 16), autism spectrum disorder (ASD; N = 26), dialysis dementia syndrome (DDS; N = 27), Down's syndrome (DS; trisomy, 21; N = 24), Huntington's chorea (HC; N = 15), multiple infarct dementia (MID; N = 19), multiple sclerosis (MS; N = 23), Parkinson's disease (PD; N = 27), and prion disease (PrD; N = 11) that included bovine spongiform encephalopathy (BSE; "mad cow disease"), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N = 11), progressive supranuclear palsy (PSP; N = 24), schizophrenia (SCZ; N = 21), a young control group (YCG; N = 22; mean age, 10.2 ± 6.1 year), and an aged control group (ACG; N = 53; mean age, 71.4 ± 9.3 year). Using ETAAS, all measurements were performed in triplicate on each tissue sample. Among these 17 common neurological conditions, we found a statistically significant trend for aluminum to be increased only in AD, DS, and DDS compared to age- and gender-matched brains from the same anatomical region. This is the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. The results continue to suggest that aluminum's association with AD, DDS, and DS brain tissues may contribute to the neuropathology of those neurological diseases but appear not to be a significant factor in other common disorders of the human brain and/or CNS.
Collapse
Affiliation(s)
- Donald R C McLachlan
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | - Catherine Bergeron
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Neuropathology, Toronto General Hospital, Toronto, ON, M5G 2C4, Canada
| | | | | | | | - Maire E Percy
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Surrey Place Center, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Obstetrics and Gynecology, Toronto, ON, M5S 1A8, Canada
| | - Theodore P A Kruck
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Louisiana Clinical and Translational Science Center (LA CaTS), LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Nathan M Sharfman
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi University of TCM, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Walter J Lukiw
- Russian Academy of Medical Sciences, Moscow, 113152, Russia.
- Alchem Biotek Research, Toronto, ON, M5S 1A8, Canada.
- LSU Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Neurology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Coronel R, Palmer C, Bernabeu-Zornoza A, Monteagudo M, Rosca A, Zambrano A, Liste I. Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved. Neural Regen Res 2019; 14:1661-1671. [PMID: 31169172 PMCID: PMC6585543 DOI: 10.4103/1673-5374.257511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathological implication of amyloid precursor protein (APP) in Alzheimer's disease has been widely documented due to its involvement in the generation of amyloid-β peptide. However, the physiological functions of APP are still poorly understood. APP is considered a multimodal protein due to its role in a wide variety of processes, both in the embryo and in the adult brain. Specifically, APP seems to play a key role in the proliferation, differentiation and maturation of neural stem cells. In addition, APP can be processed through two canonical processing pathways, generating different functionally active fragments: soluble APP-α, soluble APP-β, amyloid-β peptide and the APP intracellular C-terminal domain. These fragments also appear to modulate various functions in neural stem cells, including the processes of proliferation, neurogenesis, gliogenesis or cell death. However, the molecular mechanisms involved in these effects are still unclear. In this review, we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells, as well as the possible signaling pathways that could be implicated in these effects. The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer's disease is essential to advance the understanding of the pathogenesis of Alzheimer's disease, and in the search for potential therapeutic targets.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Monteagudo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Alberto Zambrano
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
13
|
Lukiw WJ, Kruck TP, Percy ME, Pogue AI, Alexandrov PN, Walsh WJ, Sharfman NM, Jaber VR, Zhao Y, Li W, Bergeron C, Culicchia F, Fang Z, McLachlan DR. Aluminum in neurological disease - a 36 year multicenter study. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:457. [PMID: 31179161 PMCID: PMC6550484 DOI: 10.4172/2161-0460.1000457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Aluminum is a ubiquitous neurotoxin highly enriched in our biosphere, and has been implicated in the etiology and pathology of multiple neurological diseases that involve inflammatory neural degeneration, behavioral impairment and cognitive decline. Over the last 36 years our group has analyzed the aluminum content of the temporal lobe neocortex of 511 high quality coded human brain samples from 18 diverse neurological and neurodegenerative disorders, including 2 groups of age-matched controls. Brodmann anatomical areas including the inferior, medial and superior temporal gyrus (A20-A22) were selected for analysis: (i) because of their essential functions in massive neural information processing operations including cognition and memory formation; and (ii) because subareas of these anatomical regions are unique to humans and are amongst the earliest areas affected by progressive neurodegenerative disorders such as Alzheimer's disease (AD). Coded brain tissue samples were analyzed using the analytical technique of: (i) Zeeman-type electrothermal atomic absorption spectrophotometry (ETAAS) combined with (ii) an experimental multi-elemental analysis using the advanced photon source (APS) ultra-bright storage ring-generated hard X-ray beam (7 GeV) and fluorescence raster scanning (XRFR) spectroscopy device at the Argonne National Laboratory, US Department of Energy, University of Chicago IL, USA. These data represent the largest study of aluminum concentration in the brains of human neurological and neurodegenerative disease ever undertaken. Neurological diseases examined were AD (N=186), ataxia Friedreich's type (AFT; N=6), amyotrophic lateral sclerosis (ALS; N=16), autism spectrum disorder (ASD; N=26), dialysis dementia syndrome (DDS; N=27), Down's syndrome (DS; trisomy21; N=24), Huntington's chorea (HC; N=15), multiple infarct dementia (MID; N=19), multiple sclerosis (MS; N=23), Parkinson's disease (PD; N=27), prion disease (PrD; N=11) including bovine spongiform encephalopathy (BSE; 'mad cow disease'), Creutzfeldt-Jakob disease (CJD) and Gerstmann-Straussler-Sheinker syndrome (GSS), progressive multifocal leukoencephalopathy (PML; N=11), progressive supranuclear palsy (PSP; N=24), schizophrenia (SCZ; N=21), a young control group (YCG; N=22) and an aged control group (ACG; N=53). Amongst these 18 common neurological conditions and controls we report a statistically significant trend for aluminum to be increased only in AD, DS and DDS compared to age- and gender-matched brains from the same anatomical region. The results continue to suggest that aluminum's association with AD, DDS and DS brain tissues may contribute to the neuropathology of these neurological diseases but appear not to be a significant factor in other common disorders of the human central nervous system (CNS).
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Ophthalmology, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Alchem Biotek Research, Toronto ON M5S 1A8, CANADA
- Russian Academy of Medical Sciences, Moscow 113152, RUSSIAN
FEDERATION
| | - Theodore P.A. Kruck
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
| | - Maire E. Percy
- Surrey Place Center, University of Toronto, Toronto ON M5S
1A8 CANADA
- Department of Neurogenetics, University of Toronto, Toronto
ON M5S 1A8 CANADA
| | | | | | | | - Nathan M. Sharfman
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Anatomy and Cell Biology, Louisiana State
University Health Sciences Center, New Orleans LA 70112, USA
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Pharmacology, School of Pharmacy, Jiangxi
University of TCM, Nanchang, Jiangxi 330004 CHINA
| | - Catherine Bergeron
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| | - Frank Culicchia
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Department of Neurosurgery, Louisiana State University
Health Sciences Center, New Orleans LA 70112, USA
- Culicchia Neurological Clinic, West Jefferson Medical
Center, Marrero, LA 70072 USA
| | - Zhide Fang
- Department of Biostatistics, School of Public Health, LSU
Health Sciences Center, New Orleans LA 70112, USA
- Department of Genetics, Louisiana State University Health
Sciences Center, New Orleans LA 70112, USA
- Louisiana Clinical and Translational Science Center (LA
CaTS), LSU Health Sciences Center, New Orleans LA 70112, USA
| | - Donald R.C. McLachlan
- Department of Physiology, Medical Sciences Building,
University of Toronto, Toronto ON M5S 1A8, CANADA
- Tanz Centre for Research in Neurodegenerative Diseases,
University of Toronto, Toronto ON M5S 1A8 CANADA
- Department of Neuropathology, Toronto General Hospital,
Toronto, ON M5G 2C4, CANADA
| |
Collapse
|
14
|
Zhao Y, Jaber V, Percy ME, Lukiw WJ. A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21.1-chr21q21.3 and the phenotypic diversity of Down's syndrome (DS; trisomy 21). JOURNAL OF NATURE AND SCIENCE 2017; 3:e446. [PMID: 28959732 PMCID: PMC5613287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Down's syndrome (DS) is the most common genetic cause of intellectual disability and cognitive deficit attributable to a naturally-occurring abnormality of gene dosage. DS is caused by a triplication of all or part of human chromosome 21 (chr21) and currently there are no effective treatments for this incapacitating disorder of neurodevelopment. First described by the English physician John Langdon Down in 1862, propelled by the invention of karyotype analytical techniques in the early 1950s and the discovery in 1959 by the French geneticist Jerome Lejune that DS resulted from an extra copy of chr21, DS was the first neurological disorder linking a chromosome dosage imbalance to a defect in intellectual development with ensuing cognitive disruption. Especially over the last 60 years, it has been repeatedly demonstrated that DS is not an easily defined disease entity but rather possesses a remarkably wide variability in the 'phenotypic spectrum' associated with this trisomic disorder. This commentary describes the presence of a 5 member cluster of chr21-encoded microRNAs (miRNAs) that includes let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802 located on the long arm of human chr21, spanning the chr21q21.1-chr21q21.3 region and flanking the beta amyloid precursor (βAPP) gene, and reviews the potential contribution of these 5 miRNAs to the remarkably diverse DS phenotype.
Collapse
Affiliation(s)
- Yuhai Zhao
- Department of Anatomy and Cell Biology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Vivian Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Maire E. Percy
- Department of Physiology, University of Toronto, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
- Surrey Place Centre, Toronto, Canada
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
15
|
Sabbagh MN. Editorial Introduction to the Special Issue from the International Symposium on Biomarkers for Alzheimer's Disease and Related Disorders. Neurol Ther 2017; 6:1-4. [PMID: 28733962 PMCID: PMC5520814 DOI: 10.1007/s40120-017-0068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
- Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA.
| |
Collapse
|