1
|
Chen J, Qin M, Xiang X, Guo X, Nie L, Mao L. Lymphocytes in autoimmune encephalitis: Pathogenesis and therapeutic target. Neurobiol Dis 2024; 200:106632. [PMID: 39117118 DOI: 10.1016/j.nbd.2024.106632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Autoimmune encephalitis (AE) is an inflammatory disease of the central nervous system characterized by the production of various autoimmune antibodies targeting neuronal proteins. The pathogenesis of AE remains elusive. Accumulating evidence suggests that lymphocytes, particularly B and T lymphocytes, play an integral role in the development of AE. In the last two decades, autoimmune neural antibodies have taken center stage in diagnosing AE. Recently, increasing evidence has highlighted the importance of T lymphocytes in the onset of AE. CD4+ T cells are thought to influence disease progression by secreting associated cytokines, whereas CD8+ T cells exert a cytotoxic role, causing irreversible damage to neurons mainly in patients with paraneoplastic AE. Conventionally, the first-line treatments for AE include intravenous steroids, intravenous immunoglobulin, and plasma exchange to remove pathogenic autoantibodies. However, a minority of patients are insensitive to conventional first-line treatment protocols and suffer from disease relapse, a condition referred to as refractory AE. In recent years, new treatments, such as rituximab or CAAR-T, which target pathogenic lymphocytes in patients with AE, have offered new therapeutic options for refractory AE. This review aims to describe the current knowledge about the function of B and T lymphocytes in the pathophysiology of AE and to summarize and update the immunotherapy options for treating this disease.
Collapse
Affiliation(s)
- Jiaojiao Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuying Xiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Lee ST, Abboud H, Irani SR, Nakajima H, Piquet AL, Pittock SJ, Yeh EA, Wang J, Rajan S, Overell J, Smith J, St Lambert J, El-Khairi M, Gafarova M, Gelfand JM. Innovation and optimization in autoimmune encephalitis trials: the design and rationale for the Phase 3, randomized study of satralizumab in patients with NMDAR-IgG-antibody-positive or LGI1-IgG-antibody-positive autoimmune encephalitis (CIELO). Front Neurol 2024; 15:1437913. [PMID: 39193150 PMCID: PMC11348855 DOI: 10.3389/fneur.2024.1437913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/29/2024] Open
Abstract
Background Autoimmune encephalitis (AIE) encompasses a spectrum of rare autoimmune-mediated neurological disorders, which are characterized by brain inflammation and dysfunction. Autoantibodies targeting the N-methyl-d-aspartic acid receptor (NMDAR) and leucine-rich glioma-inactivated 1 (LGI1) are the most common subtypes of antibody-positive AIE. Currently, there are no approved therapies for AIE. Interleukin-6 (IL-6) signaling plays a role in the pathophysiology of AIE. Satralizumab, a humanized, monoclonal recycling antibody that specifically targets the IL-6 receptor and inhibits IL-6 signaling, has demonstrated efficacy and safety in another autoantibody-mediated neuroinflammatory disease, aquaporin-4 immunoglobulin G antibody-positive neuromyelitis optica spectrum disorder, and has the potential to be an evidence-based disease modifying treatment in AIE. Objectives CIELO will evaluate the efficacy, safety, pharmacodynamics, and pharmacokinetics of satralizumab compared with placebo in patients with NMDAR-immunoglobulin G antibody-positive (IgG+) or LGI1-IgG+ AIE. Study design CIELO (NCT05503264) is a prospective, Phase 3, randomized, double-blind, multicenter, basket study that will enroll approximately 152 participants with NMDAR-IgG+ or LGI1-IgG+ AIE. Prior to enrollment, participants will have received acute first-line therapy. Part 1 of the study will consist of a 52-week primary treatment period, where participants will receive subcutaneous placebo or satralizumab at Weeks 0, 2, 4, and every 4 weeks thereafter. Participants may continue to receive background immunosuppressive therapy, symptomatic treatment, and rescue therapy throughout the study. Following Part 1, participants can enter an optional extension period (Part 2) to continue the randomized, double-blind study drug, start open-label satralizumab, or stop study treatment and continue with follow-up assessments. Endpoints The primary efficacy endpoint is the proportion of participants with a ≥1-point improvement in the modified Rankin Scale (mRS) score from study baseline and no use of rescue therapy at Week 24. Secondary efficacy assessments include mRS, Clinical Assessment Scale of Autoimmune Encephalitis (CASE), time to rescue therapy, sustained seizure cessation and no rescue therapy, Montreal Cognitive Assessment, and Rey Auditory Verbal Learning Test (RAVLT) measures. Safety, pharmacokinetics, pharmacodynamics, exploratory efficacy, and biomarker endpoints will be captured. Conclusion The innovative basket study design of CIELO offers the opportunity to yield prospective, robust evidence, which may contribute to the development of evidence-based treatment recommendations for satralizumab in AIE.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hesham Abboud
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - Sarosh R. Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Departments of Neurology and Neurosciences, Mayo Clinic, Jacksonville, FL, United States
| | - Hideto Nakajima
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado, Aurora, CO, United States
| | - Sean J. Pittock
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - E. Ann Yeh
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Sharmila Rajan
- Product Development Neuroscience, Genentech, Inc., South San Francisco, CA, United States
| | - James Overell
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jillian Smith
- Roche Products Ltd., Welwyn Garden City, United Kingdom
| | | | | | - Marina Gafarova
- Product Development Neuroscience, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Jeffrey M. Gelfand
- Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, CA, United States
| |
Collapse
|
3
|
Shang H, Shen X, Yu X, Zhang J, Jia Y, Gao F. B-cell targeted therapies in autoimmune encephalitis: mechanisms, clinical applications, and therapeutic potential. Front Immunol 2024; 15:1368275. [PMID: 38562943 PMCID: PMC10982343 DOI: 10.3389/fimmu.2024.1368275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Autoimmune encephalitis (AE) broadly refers to inflammation of the brain parenchyma mediated by autoimmune mechanisms. In most patients with AE, autoantibodies against neuronal cell surface antigens are produced by B-cells and induce neuronal dysfunction through various mechanisms, ultimately leading to disease progression. In recent years, B-cell targeted therapies, including monoclonal antibody (mAb) therapy and chimeric antigen receptor T-cell (CAR-T) therapy, have been widely used in autoimmune diseases. These therapies decrease autoantibody levels in patients and have shown favorable results. This review summarizes the mechanisms underlying these two B-cell targeted therapies and discusses their clinical applications and therapeutic potential in AE. Our research provides clinicians with more treatment options for AE patients whose conventional treatments are not effective.
Collapse
Affiliation(s)
- Haodong Shang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinru Shen
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoxiao Yu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongliang Jia
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- BGI College, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Khannanova AN, Brylev LV, Prusova AA, Aksenova EV, Kondrasheva EA, Kovaleva IS. [Autoimmune encephalitis: psychiatric aspects]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:20-27. [PMID: 38465807 DOI: 10.17116/jnevro202412402120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Autoimmune encephalitis is a group of diseases researched by both neurologists and psychiatrists. Despite a large number of studies and practical recommendations, the differential diagnosis and early diagnostics still remains an important issue. The most difficult to diagnose are cases that debut as mental disorders and/or occur without neurological symptoms. The literature review presents the current state of the problem with an emphasis on the practice of a psychiatrist.
Collapse
Affiliation(s)
- A N Khannanova
- Gannushkin Psychiatric Clinical Hospital No. 4, Moscow, Russia
- Russian Biotechnological University, Moscow, Russia
| | - L V Brylev
- V.M. Bujanov Moscow Clinical Hospital, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - A A Prusova
- Gannushkin Psychiatric Clinical Hospital No. 4, Moscow, Russia
| | | | | | | |
Collapse
|
5
|
Srivastava IN, Van Haren KP. Immunotherapy in Autoimmune Encephalitis: So Many Options, So Few Guidelines. Neurology 2023; 101:985-986. [PMID: 37879941 DOI: 10.1212/wnl.0000000000208026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/27/2023] [Indexed: 10/27/2023] Open
Affiliation(s)
- Isha N Srivastava
- From the Department of Neurology, School of Medicine, Stanford University, Palo Alto, CA.
| | - Keith P Van Haren
- From the Department of Neurology, School of Medicine, Stanford University, Palo Alto, CA
| |
Collapse
|
6
|
Mojžišová H, Krýsl D, Hanzalová J, Dargvainiene J, Wandinger KP, Leypoldt F, Elišák M, Marusič P. Antibody-Negative Autoimmune Encephalitis: A Single-Center Retrospective Analysis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200170. [PMID: 37879962 PMCID: PMC10605954 DOI: 10.1212/nxi.0000000000200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND OBJECTIVES Autoimmune encephalitis (AE) refers to a heterogenous group of inflammatory CNS diseases. Subgroups with specified neural autoantibodies are more homogeneous in presentation, trigger factors, outcome, and response to therapy. However, a considerable fraction of patients has AE features but does not harbor detectable autoantibodies and is referred to as antibody-negative AE. Our aim was to describe clinical features, trigger factors, treatments, and outcome of a cohort of comprehensively tested antibody-negative AE patients. METHODS This retrospective monocentric study recruited adult patients whose serum and/or CSF was sent to our tertiary center for neural antibody testing between 2011 and 2020, who entered the diagnostic algorithm as possible antibody-negative AE and had the following: (1) probable antibody-negative AE, definite antibody-negative acute disseminated encephalomyelitis (ADEM), or definite autoimmune limbic encephalitis (LE) according to diagnostic criteria; (2) available data on MRI of the brain, CSF, and EEG; and (3) stored serum and/or CSF samples. These samples were reanalyzed using a comprehensive combination of cell-based and tissue-based assays. RESULTS Of 2,250 patients tested, 33 (1.5%) were classified as possible antibody-negative AE. Of these, 5 were found to have antibodies by comprehensive testing, 5 fulfilled the criteria of probable AE (3F:2M, median age 67, range 42-67), 4 of definite autoimmune LE (2F:2M, median age 45.5, range 27-60 years), one of definite antibody-negative ADEM, 2 of Hashimoto encephalopathy, one had no samples available for additional testing, and 15 had no further categorization. Of 10 probable/definite AE/LE/ADEM, one had a malignancy and none of them received an alternative diagnosis until the end of follow-up (median 18 months). In total, 80% (8/10) of patients received immunotherapy including corticosteroids, and 6/10 (60%) patients received rituximab, azathioprine, cyclophosphamide, plasma exchange, or IV immunoglobulins. Five (50%) patients improved, one (10%) stabilized, one (10%) worsened, and 3 (30%) died. All deaths were considered to be related to encephalitis. We did not observe differences of immunotherapy-treated patients in likelihood of improvement with or without nonsteroidal immunotherapy (with 2/6, without 1/2). DISCUSSION Antibody-negative AE should be diagnosed only after comprehensive testing. Diagnostic effort is important because many patients benefit from immunotherapy and some have malignancies.
Collapse
Affiliation(s)
- Hana Mojžišová
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany.
| | - David Krýsl
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| | - Jitka Hanzalová
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| | - Justina Dargvainiene
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| | - Klaus-Peter Wandinger
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| | - Frank Leypoldt
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| | - Martin Elišák
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| | - Petr Marusič
- From the Departments of Neurology (H.M., D.K., M.E., P.M.) and Immunology (J.H.), Second Faculty of Medicine Charles University and Motol University Hospital, Prague, Czech Republic; Institute of Clinical Chemistry (J.D., K.-P.W., F.L.), University Hospital Schleswig-Holstein, Kiel/Lübeck; and Neuroimmunology (F.L.), Department of Neurology, University Hospital Schleswig-Holstein Kiel, Germany
| |
Collapse
|
7
|
Pandey R, Bakay M, Hakonarson H. SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Front Immunol 2023; 14:1271102. [PMID: 38022642 PMCID: PMC10643230 DOI: 10.3389/fimmu.2023.1271102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Autoimmune diseases arise from atypical immune responses that attack self-tissue epitopes, and their development is intricately connected to the disruption of the JAK-STAT signaling pathway, where SOCS proteins play crucial roles. Conditions such as autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis exhibit immune system dysfunctions associated with JAK-STAT signaling dysregulation. Emerging therapeutic strategies utilize JAK-STAT inhibitors and SOCS mimetics to modulate immune responses and alleviate autoimmune manifestations. Although more research and clinical studies are required to assess their effectiveness, safety profiles, and potential for personalized therapeutic approaches in autoimmune conditions, JAK-STAT inhibitors and SOCS mimetics show promise as potential treatment options. This review explores the action, effectiveness, safety profiles, and future prospects of JAK inhibitors and SOCS mimetics as therapeutic agents for psoriasis, autoimmune uveitis, systemic lupus erythematosus, and autoimmune encephalitis. The findings underscore the importance of investigating these targeted therapies to advance treatment options for individuals suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Rahul Pandey
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, The University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
8
|
Orozco E, Valencia-Sanchez C, Britton J, Dubey D, Flanagan EP, Lopez-Chiriboga AS, Zalewski N, Zekeridou A, Pittock SJ, McKeon A. Autoimmune Encephalitis Criteria in Clinical Practice. Neurol Clin Pract 2023; 13:e200151. [PMID: 37124463 PMCID: PMC10132262 DOI: 10.1212/cpj.0000000000200151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 05/02/2023]
Abstract
Background and Objectives To assess the clinical practice applicability of autoimmune encephalitis (AE) criteria (2016). Methods Medical records of 538 adults diagnosed with AE or related autoimmune encephalopathy at Mayo Clinic (not including pure movement disorders) were reviewed and AE guideline criteria applied. Results Of 538 patients, 288 were male (52%). The median symptom onset age was 55 years (range, 11-97 years; 16 had onset as children). All had other non-AE diagnoses reasonably excluded. Of 538 patients, 361 (67%) met at least possible criteria, having all 3 of subacute onset; memory deficits, altered mental status or psychiatric symptoms, and ≥1 supportive feature (new focal objective CNS finding, N = 285; new-onset seizures, N = 283; supportive MRI findings, N = 251; or CSF pleocytosis, N = 160). Of 361 patients, AE subgroups were as follows: definite AE (N = 221, 61%, [87% AE-specific IgG positive]), probable seronegative AE (N = 18, 5%), Hashimoto encephalopathy (N = 20, 6%), or possible AE not otherwise categorizable (N = 102, 28%). The 221 patients with definite AE had limbic encephalitis (N = 127, 57%), anti-NMDA-R encephalitis (N = 32, 15%), ADEM (N = 8, 4%), or other AE-specific IgG defined (N = 54, 24%). The 3 most common definite AE-IgGs detected were as follows: LGI1 (76, 34%), NMDA-R (32, 16%), and high-titer GAD65 (23, 12%). The remaining 177 patients (33%) not meeting possible AE criteria had the following: seizures only (65, 12% of all 538 patients), brainstem encephalitis without supratentorial findings (55, 10%; none had Bickerstaff encephalitis), or other (57, 11%). Those 57 "others" lacked sufficient supportive clinical, radiologic, or CSF findings (N = 26), had insidious or initially episodic onset of otherwise typical disorders (N = 21), or had atypical syndromes without clearcut memory deficits, altered mental status, or psychiatric symptoms (N = 10). Fifteen of 57 were AE-specific IgG positive (26%). Among the remaining 42, evidence of other organ-specific autoimmunity (mostly thyroid) was encountered in 31 (74%, ≥1 coexisting autoimmune disease [21, 50%] or ≥1 non-AE-specific antibodies detected [23, 53%]), and all but 1 had an objective immunotherapy response (97%). Discussion The 2016 AE guidelines permit autoimmune causation assessment in subacute encephalopathy and are highly specific. Inclusion could be improved by incorporating AE-IgG-positive patients with isolated seizures or brainstem disorders. Some patients with atypical presentations but with findings supportive of autoimmunity may be immune therapy responsive.
Collapse
Affiliation(s)
- Emma Orozco
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Cristina Valencia-Sanchez
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Jeffrey Britton
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Divyanshu Dubey
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Eoin P Flanagan
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - A Sebastian Lopez-Chiriboga
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Nicholas Zalewski
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Anastasia Zekeridou
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology (EO, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; Department of Neurology (CV-S, NZ), Mayo Clinic, AZ; Department of Neurology (JB, DD, EPF, AZ, SJP, AM), Mayo Clinic, Rochester, MN; and Department of Neurology (ASL-C), Mayo Clinic, FL
| |
Collapse
|
9
|
Flammer J, Neziraj T, Rüegg S, Pröbstel AK. Immune Mechanisms in Epileptogenesis: Update on Diagnosis and Treatment of Autoimmune Epilepsy Syndromes. Drugs 2023; 83:135-158. [PMID: 36696027 PMCID: PMC9875200 DOI: 10.1007/s40265-022-01826-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/26/2023]
Abstract
Seizures and epilepsy can result from various aetiologies, yet the underlying cause of several epileptic syndromes remains unclear. In that regard, autoimmune-mediated pathophysiological mechanisms have been gaining attention in the past years and were included as one of the six aetiologies of seizures in the most recent classification of the International League Against Epilepsy. The increasing number of anti-neuronal antibodies identified in patients with encephalitic disorders has contributed to the establishment of an immune-mediated pathophysiology in many cases of unclear aetiology of epileptic syndromes. Yet only a small number of patients with autoimmune encephalitis develop epilepsy in the proper sense where the brain transforms into a state where it will acquire the enduring propensity to produce seizures if it is not hindered by interventions. Hence, the term autoimmune epilepsy is often wrongfully used in the context of autoimmune encephalitis since most of the seizures are acute encephalitis-associated and will abate as soon as the encephalitis is in remission. Given the overlapping clinical presentation of immune-mediated seizures originating from different aetiologies, a clear distinction among the aetiological entities is crucial when it comes to discussing pathophysiological mechanisms, therapeutic options, and long-term prognosis of patients. Moreover, a rapid and accurate identification of patients with immune-mediated epilepsy syndromes is required to ensure an early targeted treatment and, thereby, improve clinical outcome. In this article, we review our current understanding of pathogenesis and critically discuss current and potential novel treatment options for seizures and epilepsy syndromes of underlying or suspected immune-mediated origin. We further outline the challenges in proper terminology.
Collapse
Affiliation(s)
- Julia Flammer
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Tradite Neziraj
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Stephan Rüegg
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland.
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital Basel and University of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland. .,Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Ciano-Petersen NL, Muñiz-Castrillo S, Birzu C, Vogrig A, Farina A, Villagrán-García M, Joubert B, Psimaras D, Honnorat J. Cytokine dynamics and targeted immunotherapies in autoimmune encephalitis. Brain Commun 2022; 4:fcac196. [PMID: 35999839 PMCID: PMC9392471 DOI: 10.1093/braincomms/fcac196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune encephalitides constitute a diverse group of immune-mediated central nervous system disorders mainly characterized by the presence of antibodies targeting neuronal or glial antigens. Despite the notable contribution of antibody discovery to the understanding of their physiopathology, the specific immune cells and inflammatory mediators involved in autoimmune encephalitis are still poorly defined. However, cytokines have recently emerged as crucial signalling molecules in the pathogenesis of autoimmune encephalitis. Cytokines are biologically active, soluble, low-molecular-weight proteins or glycoproteins involved in a wide variety of physiological functions, including central nervous system development and homeostasis, immune surveillance, as well as proliferation and maturation of immune cells. Since unbalanced cytokine expression is considered a hallmark of many autoimmune central nervous system disorders, their identification and quantification has become an essential element in personalized medicine applied to the field of neuroimmunology. Several studies have explored the cytokine profile of autoimmune encephalitis, but their interpretation and comparison is challenging due to their small sample sizes and extremely high heterogeneity, especially regarding the cytokines analysed, type of sample used, and associated neural antibody. Only the cytokine profile of anti-N-methyl-D-aspartate receptor encephalitis has extensively been investigated, with findings suggesting that, although humoral immunity is the main effector, T cells may also be relevant for the development of this disorder. A better understanding of cytokine dynamics governing neuroinflammation might offer the opportunity of developing new therapeutic strategies against specific immune cells, cytokines, antibodies, or intracellular signalling cascades, therefore leading to better outcomes and preventing undesired side effects of the presently used strategies. In this review, we first summarize the current knowledge about the role of cytokines in the pathogenesis of autoimmune encephalitis, combining theoretical analysis with experimental validations, to assess their suitability as clinical biomarkers. Second, we discuss the potential applicability of the novel targeted immunotherapies in autoimmune encephalitis depending on the immunobiology of the associated antibody, their limitations, as well as the main limitations that should be addressed in future studies.
Collapse
Affiliation(s)
- Nicolás Lundahl Ciano-Petersen
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
- Neuroimmunology and Neuroinflammation group. Biomedical Research Institute of Málaga (IBIMA) , Málaga , Spain
- Red Andaluza de Investigación Clínica y Traslacional en Neurología (Neuro-RECA). Hospital Regional Universitario de Málaga , Málaga , Spain
| | - Sergio Muñiz-Castrillo
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Cristina Birzu
- Service de Neurologie 2-Mazarin, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, Groupe Hospitalier Pitie-Salpetrière et Université Pierre et Marie Curie-Paris 6, AP-HP , Paris , France
| | - Alberto Vogrig
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Antonio Farina
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Macarena Villagrán-García
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Bastien Joubert
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Dimitri Psimaras
- Service de Neurologie 2-Mazarin, Centre de Recherche de l’Institut du Cerveau et de la Moelle Epinière, Groupe Hospitalier Pitie-Salpetrière et Université Pierre et Marie Curie-Paris 6, AP-HP , Paris , France
| | - Jérôme Honnorat
- French Reference Center on Paraneoplastic Neurological Syndromes and Autoimmune Encephalitis, Hospices Civils de Lyon, Hôpital Neurologique , Bron , France
- SynatAc Team, Institute MeLiS, INSERM U1314/CNRS UMR 5284, Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| |
Collapse
|
11
|
Abstract
Autoimmune encephalitis represents a potentially treatable immune-mediated condition that is being more frequently recognized. Prompt immunotherapy is a key factor for the management of autoimmune encephalitis. First-line treatments include intravenous steroids, plasma exchange, and intravenous immunoglobulins, which can be combined in most severe cases. Rituximab and cyclophosphamide are administered as second-line agents in unresponsive cases. A minority of patients may still remain refractory, thus representing a major clinical challenge. In these cases, treatment strategies are controversial, and no guidelines exist. Treatments proposed for refractory autoimmune encephalitis include (1) cytokine-based drugs (such as tocilizumab, interleukin-2/basiliximab, anakinra, and tofacitinib); (2) plasma cell-depleting agents (such as bortezomib and daratumumab); and (3) treatments targeting intrathecal immune cells or their trafficking through the blood-brain barrier (such as intrathecal methotrexate and natalizumab). The efficacy evidence of these drugs is mostly based on case reports or small case series, with few reported controlled studies or systematic reviews. The aim of the present review is to summarize the current evidence and related methodological issues in the use of these drugs for the treatment of refractory autoimmune encephalitis.
Collapse
Affiliation(s)
- Alessandro Dinoto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy
| | - Sergio Ferrari
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy
| | - Sara Mariotto
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Policlinico GB Rossi, P.le LA Scuro 10, 37135, Verona, Italy.
| |
Collapse
|