1
|
Borda MG, Botero‐Rodríguez F, Santacruz‐Escudero JM, Cano‐Gutiérrez C, Aarsland D. Shining a Spotlight on Dementia with Lewy Bodies in Latin America. Mov Disord 2025; 40:222-225. [PMID: 39760508 PMCID: PMC11832787 DOI: 10.1002/mds.30110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025] Open
Affiliation(s)
- Miguel Germán Borda
- Centre for Age‐Related Medicine (SESAM), Stavanger University HospitalStavangerNorway
- Department of NeurologyClínica Universidad de NavarraPamplonaSpain
| | - Felipe Botero‐Rodríguez
- Centre for Age‐Related Medicine (SESAM), Stavanger University HospitalStavangerNorway
- Fundación para la Ciencia, Innovación y Tecnología – FucintecBogotáColombia
- Intellectus Memory and Cognition Center, Hospital Universitario San IgnacioBogotáColombia
| | - José Manuel Santacruz‐Escudero
- Intellectus Memory and Cognition Center, Hospital Universitario San IgnacioBogotáColombia
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad JaverianaBogotáColombia
- Departamento de Psiquiatría y Salud MentalPontificia Universidad JaverianaBogotáColombia
| | - Carlos Cano‐Gutiérrez
- Intellectus Memory and Cognition Center, Hospital Universitario San IgnacioBogotáColombia
- Semillero de Neurociencias y Envejecimiento, Ageing Institute, Medical School, Pontificia Universidad JaverianaBogotáColombia
| | - Dag Aarsland
- Centre for Age‐Related Medicine (SESAM), Stavanger University HospitalStavangerNorway
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology, and Neuroscience, King's College LondonLondonUK
| | | |
Collapse
|
2
|
Wyman-Chick KA, Bayram E, Gravett S, D'Antonio F, Rodriguez-Porcel F, Kane JPM, Ferman TJ, Olson-Bullis BA, Boeve BF, Bonanni L, Ferreira D. Neuropsychological test performance in mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis. Alzheimers Dement 2025. [PMID: 39791487 DOI: 10.1002/alz.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND We sought to characterize the cognitive profile among individuals with mild cognitive impairment with Lewy bodies (MCI-LB) to help guide future clinical criteria. METHODS Systematic review and meta-analysis included MCI-LB studies with cognitive data from PubMed, Embase, Web of Science, and PsycINFO (January 1990 to March 2023). MCI-LB scores were compared to controls, MCI due to Alzheimer's disease (MCI-AD), and dementia with Lewy bodies (DLB) groups with random-effects models. RESULTS We included 26 studies and 2823 participants. Across all domains, the MCI-LB group performed worse than controls and better than DLB. Compared to MCI-AD, the MCI-LB group performed worse in attention/processing speed (g = -0.24, 95% confidence interval [CI]: -0.35, -0.12), attention/executive (g = -0.42, 95% CI: -0.56, -0.28); better in verbal immediate recall (g = 0.37; 95% CI: 0.15, 0.59) and delayed memory (g = 0.40; 95% CI: 0.22, 0.58). DISCUSSION The cognitive profiles in MCI-LB and MCI-AD are consistent with established profiles in DLB and AD. Neuropsychological assessment may be helpful in differential diagnosis, even in early disease states. HIGHLIGHTS We performed a systematic review and meta-analysis for cognition in mild cognitive impairment with Lewy bodies (MCI-LB). Compared to MCI due to Alzheimer's disease (MCI-AD), MCI-LB had worse attention, executive function, and processing speed. Compared to MCI-AD, MCI-LB had better verbal immediate and delayed recall. The MCI-LB group was worse on all cognitive domains than controls, and better than dementia with Lewy bodies. Studies used different tests and there is a need for global efforts for harmonization.
Collapse
Affiliation(s)
- Kathryn A Wyman-Chick
- Struthers Parkinson's Center, Department of Neurology, HealthPartners/Park Nicollet, Golden Valley, Minnesota, USA
- HealthPartners Institute, Bloomington, Minnesota, USA
| | - Ece Bayram
- Movement Disorders Center, Department of Neurology, University of Colorado Anschutz, Aurora, Colorado, USA
| | - Stephanie Gravett
- Theme Women's Health and Allied Health Professionals, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Fabrizia D'Antonio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Joseph P M Kane
- Centre for Public Health, Institute of Clinical Sciences Belfast B, Royal Victorial Hospital, Queen's University Belfast, Belfast, UK
| | - Tanis J Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Bonanni
- Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
3
|
Palushaj B, Lewis SJG, Abdelnour C. What is the future for dementia with Lewy bodies? J Neurol 2024; 272:43. [PMID: 39666092 DOI: 10.1007/s00415-024-12734-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia after Alzheimer's disease (AD), yet it remains under-recognized and frequently misdiagnosed due to heterogenous clinical presentations, the presence of co-pathology, and the lack of specific diagnostic tools. Pathologically, DLB is characterized by the accumulation of misfolded alpha-synuclein (aSyn) aggregates, known as Lewy bodies. Recent advancements have improved in vivo detection of aSyn pathology through techniques such as seed amplification assays, monoclonal antibodies, and positron emission tomography using novel small-molecule ligands. The ability to detect aSyn in vivo has sparked dialogue about using biomarkers to identify individuals with aSyn, similar to the approach influencing the field of AD. Proponents argue that biological staging could facilitate the detection of preclinical disease stages, allowing for earlier intervention and targets for disease modification, and could improve diagnostic sensitivity and accuracy in selecting patients for clinical trials. However, critics caution that this method may oversimplify the complexity of DLB and overlook its clinical heterogeneity, also highlighting practical challenges related to implementation, cost, and global access to advanced diagnostic technologies. Importantly, although significant progress has been made in detecting aSyn for diagnostic purposes, disease-modifying therapies targeting aSyn have yet to demonstrate clear efficacy in slowing disease progression. Elucidating the physiological and pathophysiological roles of aSyn remains an urgent priority in neurodegenerative research. Other experimental research priorities for DLB include developing improved cellular and animal models that reflect epigenetic and environmental factors, mapping post-translational modifications, and systematically characterizing neurons that are vulnerable and resistant to lewy pathology using a multi-omic approach. Clinically, there is an urgent need for international, prospective, longitudinal studies and for validated, disease-specific outcome measures. Addressing these priorities is essential for advancing our understanding of DLB and developing effective therapies.
Collapse
Affiliation(s)
- Bianca Palushaj
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | | | - Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Young CB, Cholerton B, Smith AM, Shahid-Besanti M, Abdelnour C, Mormino EC, Hu SC, Chung KA, Peterson A, Rosenthal L, Pantelyat A, Dawson TM, Quinn J, Zabetian CP, Montine TJ, Poston KL. The Parkinson's Disease Composite of Executive Functioning: A Measure for Detecting Cognitive Decline in Clinical Trials. Neurology 2024; 103:e209609. [PMID: 38870440 PMCID: PMC11244747 DOI: 10.1212/wnl.0000000000209609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Executive functioning is one of the first domains to be impaired in Parkinson disease (PD), and the majority of patients with PD eventually develop dementia. Thus, developing a cognitive endpoint measure specifically assessing executive functioning is critical for PD clinical trials. The objective of this study was to develop a cognitive composite measure that is sensitive to decline in executive functioning for use in PD clinical trials. METHODS We used cross-sectional and longitudinal follow-up data from PD participants enrolled in the PD Cognitive Genetics Consortium, a multicenter setting focused on PD. All PD participants with Trail Making Test, Digit Symbol, Letter-Number Sequencing, Semantic Fluency, and Phonemic Fluency neuropsychological data collected from March 2010 to February 2020 were included. Baseline executive functioning data were used to create the Parkinson's Disease Composite of Executive Functioning (PaCEF) through confirmatory factor analysis. We examined the changes in the PaCEF over time, how well baseline PaCEF predicts time to cognitive progression, and the required sample size estimates for PD clinical trials. PaCEF results were compared with the Montreal Cognitive Assessment (MoCA), individual tests forming the PaCEF, and tests of visuospatial, language, and memory functioning. RESULTS A total of 841 participants (251 no cognitive impairment [NCI], 480 mild cognitive impairment [MCI], and 110 dementia) with baseline data were included, of which the mean (SD) age was 67.1 (8.9) years and 270 were women (32%). Five hundred forty five PD participants had longitudinal neuropsychological data spanning 9 years (mean [SD] 4.5 [2.2] years) and were included in analyses examining cognitive decline. A 1-factor model of executive functioning with excellent fit (comparative fit index = 0.993, Tucker-Lewis index = 0.989, and root mean square error of approximation = 0.044) was used to calculate the PaCEF. The average annual change in PaCEF ranged from 0.246 points per year for PD-NCI participants who remained cognitively unimpaired to -0.821 points per year for PD-MCI participants who progressed to dementia. For PD-MCI, baseline PaCEF, but not baseline MoCA, significantly predicted time to dementia. Sample size estimates were 69%-73% smaller for PD-NCI trials and 16%-19% smaller for PD-MCI trials when using the PaCEF rather than MoCA as the endpoint. DISCUSSION The PaCEF is a sensitive measure of executive functioning decline in PD and will be especially beneficial for PD clinical trials.
Collapse
Affiliation(s)
- Christina B Young
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brenna Cholerton
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alena M Smith
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marian Shahid-Besanti
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Carla Abdelnour
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elizabeth C Mormino
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shu-Ching Hu
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathryn A Chung
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Amie Peterson
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Liana Rosenthal
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexander Pantelyat
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ted M Dawson
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph Quinn
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Cyrus P Zabetian
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Thomas J Montine
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kathleen L Poston
- From the Departments of Neurology and Neurological Sciences (C.B.Y., A.M.S., M.S.-B., C.A., E.C.M., K.L.P.) and (B.C., T.J.M.), Stanford University School of Medicine, CA; Veterans Affairs Puget Sound Health Care System (B.C., S.-C.H., C.P.Z.), Seattle; Department of Neurology (S.-C.H., C.P.Z.), University of Washington School of Medicine, Seattle; Department of Neurology (K.A.C., A. Peterson, J.Q.), Oregon Health and Science University, Portland; Portland Veterans Affairs Health Care System (K.A.C., A. Peterson, J.Q.), Oregon; Department of Neurology (L.R., A. Pantelyat, T.M.D.), Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
5
|
Vrillon A, Bousiges O, Götze K, Demuynck C, Muller C, Ravier A, Schorr B, Philippi N, Hourregue C, Cognat E, Dumurgier J, Lilamand M, Cretin B, Blanc F, Paquet C. Plasma biomarkers of amyloid, tau, axonal, and neuroinflammation pathologies in dementia with Lewy bodies. Alzheimers Res Ther 2024; 16:146. [PMID: 38961441 PMCID: PMC11221164 DOI: 10.1186/s13195-024-01502-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Increasing evidence supports the use of plasma biomarkers of amyloid, tau, neurodegeneration, and neuroinflammation for diagnosis of dementia. However, their performance for positive and differential diagnosis of dementia with Lewy bodies (DLB) in clinical settings is still uncertain. METHODS We conducted a retrospective biomarker study in two tertiary memory centers, Paris Lariboisière and CM2RR Strasbourg, France, enrolling patients with DLB (n = 104), Alzheimer's disease (AD, n = 76), and neurological controls (NC, n = 27). Measured biomarkers included plasma Aβ40/Aβ42 ratio, p-tau181, NfL, and GFAP using SIMOA and plasma YKL-40 and sTREM2 using ELISA. DLB patients with available CSF analysis (n = 90) were stratified according to their CSF Aβ profile. RESULTS DLB patients displayed modified plasma Aβ ratio, p-tau181, and GFAP levels compared with NC and modified plasma Aβ ratio, p-tau181, GFAP, NfL, and sTREM2 levels compared with AD patients. Plasma p-tau181 best differentiated DLB from AD patients (ROC analysis, area under the curve [AUC] = 0.80) and NC (AUC = 0.78), and combining biomarkers did not improve diagnosis performance. Plasma p-tau181 was the best standalone biomarker to differentiate amyloid-positive from amyloid-negative DLB cases (AUC = 0.75) and was associated with cognitive status in the DLB group. Combining plasma Aβ ratio, p-tau181 and NfL increased performance to identify amyloid copathology (AUC = 0.79). Principal component analysis identified different segregation patterns of biomarkers in the DLB and AD groups. CONCLUSIONS Amyloid, tau, neurodegeneration and neuroinflammation plasma biomarkers are modified in DLB, albeit with moderate diagnosis performance. Plasma p-tau181 can contribute to identify Aβ copathology in DLB.
Collapse
Affiliation(s)
- Agathe Vrillon
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France.
- Université Paris Cité, INSERM, UMRS 1144, Paris, France.
- University of California San Francisco, San Francisco, USA.
| | - Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, Strasbourg, France
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
| | - Karl Götze
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| | - Catherine Demuynck
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Candice Muller
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Alix Ravier
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Benoît Schorr
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
| | - Nathalie Philippi
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Hourregue
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Emmanuel Cognat
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| | - Julien Dumurgier
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Matthieu Lilamand
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | - Benjamin Cretin
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Frédéric Blanc
- University of Strasbourg and CNRS, ICube laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), team IMIS Strasbourg, Strasbourg, France
- CM2R (Memory Resource and Research Centre), Service of Gerontology Mobile-Neuro-Psy-Research, Geriatrics Department, University Hospital of Strasbourg, Strasbourg, France
- Neuropsychology unit, Service of Neurology Strasbourg, University Hospital of Strasbourg, Strasbourg, France
| | - Claire Paquet
- AP-HP Nord, Cognitive Neurology Center Hôpital Lariboisière-Fernand Widal, Université Paris Cité, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
- Université Paris Cité, INSERM, UMRS 1144, Paris, France
| |
Collapse
|
6
|
Amland R, Selbæk G, Brækhus A, Edwin TH, Engedal K, Knapskog AB, Olsrud ER, Persson K. Clinically feasible automated MRI volumetry of the brain as a prognostic marker in subjective and mild cognitive impairment. Front Neurol 2024; 15:1425502. [PMID: 39011362 PMCID: PMC11248186 DOI: 10.3389/fneur.2024.1425502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Background/aims The number of patients suffering from cognitive decline and dementia increases, and new possible treatments are being developed. Thus, the need for time efficient and cost-effective methods to facilitate an early diagnosis and prediction of future cognitive decline in patients with early cognitive symptoms is becoming increasingly important. The aim of this study was to evaluate whether an MRI based software, NeuroQuant® (NQ), producing volumetry of the hippocampus and whole brain volume (WBV) could predict: (1) conversion from subjective cognitive decline (SCD) at baseline to mild cognitive impairment (MCI) or dementia at follow-up, and from MCI at baseline to dementia at follow-up and (2) progression of cognitive and functional decline defined as an annual increase in the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) score. Methods MRI was performed in 156 patients with SCD or MCI from the memory clinic at Oslo University Hospital (OUH) that had been assessed with NQ and had a clinical follow-up examination. Logistic and linear regression analyses were performed with hippocampus volume and WBV as independent variables, and conversion or progression as dependent variables, adjusting for demographic and other relevant covariates including Mini-Mental State Examination-Norwegian Revised Version score (MMSE-NR) and Apolipoprotein E ɛ4 (APOE ɛ4) carrier status. Results Hippocampus volume, but not WBV, was associated with conversion to MCI or dementia, but neither were associated with conversion when adjusting for MMSE-NR. Both hippocampus volume and WBV were associated with progression as measured by the annual change in CDR-SB score in both unadjusted and adjusted analyses. Conclusion The results indicate that automated regional MRI volumetry of the hippocampus and WBV can be useful in predicting further cognitive decline in patients with early cognitive symptoms.
Collapse
Affiliation(s)
- Rachel Amland
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Geir Selbæk
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Brækhus
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Trine H. Edwin
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Engedal
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | | | - Ellen Regine Olsrud
- Department of Radiography Ullevål, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Karin Persson
- The Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Albertini C, Petralla S, Massenzio F, Monti B, Rizzardi N, Bergamini C, Uliassi E, Borges F, Chavarria D, Fricker G, Goettert M, Kronenberger T, Gehringer M, Laufer S, Bolognesi ML. Targeting Lewy body dementia with neflamapimod-rasagiline hybrids. Arch Pharm (Weinheim) 2024; 357:e2300525. [PMID: 38412454 DOI: 10.1002/ardp.202300525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain-penetrant selective inhibitor of the alpha isoform of the mitogen-activated serine/threonine protein kinase (MAPK) p38α, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6-dichlorophenyl ring of 1, generating neflamapimod-propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N-methyl-N-propargyl derivative 4 showed a nanomolar p38α-MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6-fold lower compared to that of the parent compound 1, while displaying no hepato- and neurotoxicity up to 25 μM concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 μM concentration, 4 demonstrated a neuroprotective effect against dexamethasone-induced reactive oxygen species production in neuronal cells that was higher than that of 1.
Collapse
Affiliation(s)
- Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sabrina Petralla
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Nicola Rizzardi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Christian Bergamini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernanda Borges
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Marcia Goettert
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Thales Kronenberger
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Matthias Gehringer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Maria L Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| |
Collapse
|
8
|
Schwab K, Frahm S, Magbagbeolu M, Horsley D, Goatman EA, Melis V, Theuring F, Ishaq A, Storey JMD, Harrington CR, Wischik CM, Riedel G. LETC inhibits α-Syn aggregation and ameliorates motor deficiencies in the L62 mouse model of synucleinopathy. Eur J Pharmacol 2024; 970:176505. [PMID: 38503400 DOI: 10.1016/j.ejphar.2024.176505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Alpha-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). Here, we explored the efficacy of N,N,N',N'-tetraethyl-10H-phenothiazine-3,7-diamine dihydrochloride (LETC), a protein aggregation inhibitor, on α-Syn aggregation. In both cellular models and transgenic mice, α-Syn aggregation was achieved by the overexpression of full-length human α-Syn fused with a signal sequence peptide. α-Syn accumulated in transfected DH60.21 neuroblastoma cells and α-Syn aggregation was inhibited by LETC with an EC50 of 0.066 ± 0.047 μM. Full-length human α-Syn overexpressing Line 62 (L62) mice accumulated neuronal α-Syn that was associated with a decreased motor performance in the open field and automated home cage. LETC, administered orally for 6 weeks at 10 mg/kg significantly decreased α-Syn-positive neurons in multiple brain regions and this resulted in a rescue of movement deficits in the open field in these mice. LETC however, did not improve activity deficits of L62 mice in the home cage environment. The results suggest that LETC may provide a potential disease modification therapy in synucleinopathies through the inhibition of α-Syn aggregation.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany.
| | - Silke Frahm
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - David Horsley
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Elizabeth A Goatman
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Ahtsham Ishaq
- Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | - John M D Storey
- Department of Chemistry, University of Aberdeen, Aberdeen, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
9
|
Wang HL, Siow R, Schmauck-Medina T, Zhang J, Sandset PM, Filshie C, Lund Ø, Partridge L, Bergersen LH, Juel Rasmussen L, Palikaras K, Sotiropoulos I, Storm-Mathisen J, Rubinsztein DC, Spillantini MG, De Zeeuw CI, Watne LO, Vyhnalek M, Veverova K, Liang KX, Tavernarakis N, Bohr VA, Yokote K, Saarela J, Nilsen H, Gonos ES, Scheibye-Knudsen M, Chen G, Kato H, Selbæk G, Fladby T, Nilsson P, Simonsen A, Aarsland D, Lautrup S, Ottersen OP, Cox LS, Fang EF. Meeting Summary of The NYO3 5th NO-Age/AD Meeting and the 1st Norway-UK Joint Meeting on Aging and Dementia: Recent Progress on the Mechanisms and Interventional Strategies. J Gerontol A Biol Sci Med Sci 2024; 79:glae029. [PMID: 38289789 PMCID: PMC10917444 DOI: 10.1093/gerona/glae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.
Collapse
Affiliation(s)
- He-Ling Wang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Richard Siow
- School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Tomas Schmauck-Medina
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Jianying Zhang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- Xiangya School of Stomatology, Central South University, Changsha, Hunan, China
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London (UCL), London, UK
| | - Linda Hildegard Bergersen
- Brain and Muscle Energy Group, Institute of Oral Biology, University of Oslo, Oslo, Norway
- Center for Healthy Aging, Department of Neuroscience and Pharmacology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Konstantinos Palikaras
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Sotiropoulos
- Institute of Biosciences and Applications NCSR “Demokritos,”Athens, Greece
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jon Storm-Mathisen
- Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | | | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Leiv Otto Watne
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Martin Vyhnalek
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Veverova
- Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | | | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology Foundation for Research and Technology, Heraklion, Greece
- Medical School, University of Crete, Heraklion, Greece
| | - Vilhelm A Bohr
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Koutaro Yokote
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Janna Saarela
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Oslo, Norway
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Hilde Nilsen
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Efstathios S Gonos
- National Helenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | - Morten Scheibye-Knudsen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
- Tracked.bio, Copenhagen, Denmark
| | - Guobing Chen
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, China
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Hisaya Kato
- Department of Endocrinology, Hematology, and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Geir Selbæk
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Tormod Fladby
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, Oslo, Norway
| | - Dag Aarsland
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Ole Petter Ottersen
- Centre for Sustainable Healthcare Education, Faculty of Medicine, University of Oslo, Oslo, Norway
- Karolinska Institutet, Stockholm, Sweden
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
10
|
Agarwal K, Backler W, Bayram E, Bloom L, Boeve BF, Cha J, Denslow M, Ferman TJ, Galasko D, Galvin JE, Gomperts SN, Irizarry MC, Kantarci K, Kaushik H, Kietlinski M, Koenig A, Leverenz JB, McKeith I, McLean PJ, Montine TJ, Moose SO, O'Brien JT, Panier V, Ramanathan S, Ringel MS, Scholz SW, Small J, Sperling RA, Taylor A, Taylor J, Ward RA, Witten L, Hyman BT. Lewy body dementia: Overcoming barriers and identifying solutions. Alzheimers Dement 2024; 20:2298-2308. [PMID: 38265159 PMCID: PMC10942666 DOI: 10.1002/alz.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/25/2024]
Abstract
Despite its high prevalence among dementias, Lewy body dementia (LBD) remains poorly understood with a limited, albeit growing, evidence base. The public-health burden that LBD imposes is worsened by overlapping pathologies, which contribute to misdiagnosis, and lack of treatments. For this report, we gathered and analyzed public-domain information on advocacy, funding, research outputs, and the therapeutic pipeline to identify gaps in each of these key elements. To further understand the current gaps, we also conducted interviews with leading experts in regulatory/governmental agencies, LBD advocacy, academic research, and biopharmaceutical research, as well as with funding sources. We identified wide gaps across the entire landscape, the most critical being in research. Many of the experts participated in a workshop to discuss the prioritization of research areas with a view to accelerating therapeutic development and improving patient care. This white paper outlines the opportunities for bridging the major LBD gaps and creates the framework for collaboration in that endeavor. HIGHLIGHTS: A group representing academia, government, industry, and consulting expertise was convened to discuss current progress in Dementia with Lewy Body care and research. Consideration of expert opinion,natural language processing of the literature as well as publicly available data bases, and Delphi inspired discussion led to a proposed consensus document of priorities for the field.
Collapse
Affiliation(s)
| | | | - Ece Bayram
- Parkinson and Other Movement Disorders CenterDepartment of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | | | - Maria Denslow
- Alzheimer Disease and Brain HealthEisai, Inc.NutleyNew JerseyUSA
| | - Tanis J. Ferman
- Department of Psychiatry and PsychologyMayo ClinicJacksonvilleFloridaUSA
| | - Douglas Galasko
- Department of Neurosciencesand Shiley‐Marcos Alzheimer's Disease Research CenterUC San DiegoLa JollaCaliforniaUSA
| | - James E. Galvin
- Department of NeurologyComprehensive Center for Brain HealthUniversity of Miami Miller School of MedicineBoca RatonFloridaUSA
| | | | | | - Kejal Kantarci
- Department of RadiologyDivision of NeuroradiologyMayo Clinic RochesterRochesterMinnesotaUSA
| | | | | | | | - James B. Leverenz
- Cleveland Lou Ruvo Center for Brain HealthNeurological InstituteCleveland ClinicClevelandOhioUSA
| | - Ian McKeith
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | | | | | | - John T. O'Brien
- Department of PsychiatryUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | | | - Sharad Ramanathan
- Departments of Molecular and Cell BiologyStem Cell and Regenerative Biology and Applied PhysicsHarvard UniversityCambridgeMassachusettsUSA
| | | | - Sonja W. Scholz
- National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMarylandUSA
- Department of NeurologyJohns Hopkins University Medical CenterBaltimoreMarylandUSA
| | | | - Reisa A. Sperling
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
- Department of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Rebecca A. Ward
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| | - Lisa Witten
- The Boston Consulting GroupBostonMassachusettsUSA
| | - Bradley T. Hyman
- Department of NeurologyMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|