1
|
Kuppa SS, Kang JY, Yang HY, Lee SC, Sankaranarayanan J, Kim HK, Seon JK. Hyaluronic Acid Viscosupplement Modulates Inflammatory Mediators in Chondrocyte and Macrophage Coculture via MAPK and NF-κB Signaling Pathways. ACS OMEGA 2024; 9:21467-21483. [PMID: 38764654 PMCID: PMC11097370 DOI: 10.1021/acsomega.4c01911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024]
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disorder characterized by cartilage degeneration and synovial inflammation. Paracrine interactions between chondrocytes and macrophages play an essential role in the onset and progression of OA. In this study, in replicating the inflammatory response during OA pathogenesis, chondrocytes were treated with interleukin-1β (IL-1β), and macrophages were treated with lipopolysaccharide and interferon-γ. In addition, a coculture system was developed to simulate the biological situation in the joint. In this study, we examined the impact of hyaluronic acid (HA) viscosupplement, particularly Hyruan Plus, on chondrocytes and macrophages. Notably, this viscosupplement has demonstrated promising outcomes in reducing inflammation; however, the underlying mechanism of action remains elusive. The viscosupplement attenuated inflammation, showing an inhibitory effect on nitric oxide production, downregulating proinflammatory cytokines such as matrix metalloproteinases (MMP13 and MMP3), and upregulating the expression levels of type II collagen and aggrecan in chondrocytes. HA also reduced the expression level of inflammatory cytokines such as IL-1β, TNF-α, and IL-6 in macrophages, and HA exerted an overall protective effect by partially suppressing the MAPK pathway in chondrocytes and p65/NF-κB signaling in macrophages. Therefore, HA shows potential as a viscosupplement for treating arthritic joints.
Collapse
Affiliation(s)
- Sree Samanvitha Kuppa
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Ju Yeon Kang
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hong Yeol Yang
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Seok Cheol Lee
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jaishree Sankaranarayanan
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Hyung Keun Kim
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| | - Jong Keun Seon
- Department
of Biomedical Sciences, Chonnam National
University Medical School, Hwasun 58128, Korea
- Department
of Orthopaedics Surgery, Center for Joint
Disease of Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Jeonnam 519-763, Korea
- Korea
Biomedical Materials and Devices Innovation Research Center of Chonnam
National University Hospital, 42, Jebong-ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
2
|
Emami A, Namdari H, Parvizpour F, Arabpour Z. Challenges in osteoarthritis treatment. Tissue Cell 2023; 80:101992. [PMID: 36462384 DOI: 10.1016/j.tice.2022.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a degenerative joint cartilage disease that is the most common cause of disability in the world among the elderly. It leads to social, psychological, and economic costs with financial consequences. The principles of OA treatment are to reduce pain and stiffness as well as maintain function. In recent years, due to a better understanding of the underlying pathophysiology of OA, a number of potential therapeutic advances have been made, which include tissue engineering, immune system manipulation, surgical technique, pharmacological, and non-pharmacological treatments. Despite this, there is still no certain cure for OA, and different OA treatments are usually considered in relation to the stage of the disease. The purpose of the present review is to summarize and discuss the latest results of new treatments for OA and potential targets for future research.
Collapse
Affiliation(s)
- Asrin Emami
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Medicine department, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Zohreh Arabpour
- Iranian tissue bank and research center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Radhouani H, Correia S, Gonçalves C, Reis RL, Oliveira JM. Synthesis and Characterization of Biocompatible Methacrylated Kefiran Hydrogels: Towards Tissue Engineering Applications. Polymers (Basel) 2021; 13:1342. [PMID: 33923932 PMCID: PMC8072540 DOI: 10.3390/polym13081342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023] Open
Abstract
Hydrogel application feasibility is still limited mainly due to their low mechanical strength and fragile nature. Therefore, several physical and chemical cross-linking modifications are being used to improve their properties. In this research, methacrylated Kefiran was synthesized by reacting Kefiran with methacrylic anhydride (MA). The developed MA-Kefiran was physicochemically characterized, and its biological properties evaluated by different techniques. Chemical modification of MA-Kefiran was confirmed by 1H-NMR and FTIR and GPC-SEC showed an average Mw of 793 kDa (PDI 1.3). The mechanical data obtained revealed MA-Kefiran to be a pseudoplastic fluid with an extrusion force of 11.21 ± 2.87 N. Moreover, MA-Kefiran 3D cryogels were successfully developed and fully characterized. Through micro-CT and SEM, the scaffolds revealed high porosity (85.53 ± 0.15%) and pore size (33.67 ± 3.13 μm), thick pore walls (11.92 ± 0.44 μm) and a homogeneous structure. Finally, MA-Kefiran revealed to be biocompatible by presenting no hemolytic activity and an improved cellular function of L929 cells observed through the AlamarBlue® assay. By incorporating methacrylate groups in the Kefiran polysaccharide chain, a MA-Kefiran product was developed with remarkable physical, mechanical, and biological properties, resulting in a promising hydrogel to be used in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Hajer Radhouani
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Susana Correia
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Cristiana Gonçalves
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.C.); (C.G.); (R.L.R.); (J.M.O.)
- ICVS/3B’s–PT Government Associate Laboratory, Braga, 4805-017 Guimarães, Portugal
| |
Collapse
|