1
|
Zolezzi DM, Kold S, Brock C, Jensen ABH, Jensen ST, Larsen IM, Olesen SS, Mørch CD, Drewes AM, Graven-Nielsen T. Transcranial Direct Current Stimulation Reduces Pressure Pain Sensitivity in Patients With Noncancer Chronic Pain. Clin J Pain 2024; 40:625-634. [PMID: 39310962 DOI: 10.1097/ajp.0000000000001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/09/2024] [Indexed: 11/10/2024]
Abstract
OBJECTIVES Noncancer chronic pain is a clinical challenge because pharmacological treatment often fails to relieve pain. Transcranial direct current stimulation (tDCS) is a treatment that could have the potential for pain relief and improvement in quality of life. However, there is a lack of clinical trials evaluating the effects of tDCS on the pain system. The aim of the present study was to evaluate the effect of 5 days of anodal tDCS treatment on the pain system in patients with chronic noncancer pain using quantitative sensory testing and quality of life questionnaires: (1) Brief Pain Inventory-short form, (2) European Organization for Research and Treatment of Life Questionnaire-C30, and (3) Hospital Anxiety Depression Scale. METHODS Eleven patients with noncancer chronic pain (51 ± 13.6 y old, 5M) participated in the study. Anodal tDCS was applied for 5 consecutive days, followed by sham stimulation after a washout period of at least 2 weeks. Pressure pain thresholds and pain tolerance thresholds (PTT) were assessed in different body regions on days 1 and 5. RESULTS Anodal tDCS appeared to maintain PTT at C5 (clavicle) on day 5, but sham stimulation decreased PTT ( P = 0.007). In addition, anodal tDCS increased PTT compared with sham at day 5 at Th10 ventral dermatomes ( P = 0.014). Both anodal and sham tDCS decreased the Brief Pain Inventory-short form total and interference scores, and the European Organization for Research and Treatment of Life Questionnaire-C30 fatigue score, but no interaction effect was observed. CONCLUSION This study adds to the evidence in the literature that tDCS may be a potential therapeutic tool for the management of noncancer chronic pain.
Collapse
Affiliation(s)
- Daniela M Zolezzi
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Sebastian Kold
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Anne Birthe Helweg Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Sarah Thorius Jensen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Søren Schou Olesen
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carsten Dahl Mørch
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark, Gistrup
| |
Collapse
|
2
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
3
|
González-Zamorano Y, José Sánchez-Cuesta F, Moreno-Verdú M, Arroyo-Ferrer A, Fernández-Carnero J, Chaudhuri KR, Fieldwalker A, Romero JP. TDCS for parkinson's disease disease-related pain: A randomized trial. Clin Neurophysiol 2024; 161:133-146. [PMID: 38479239 DOI: 10.1016/j.clinph.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 01/04/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE To evaluate the effects of transcranial direct current stimulation (tDCS) on Parkinson's disease (PD)-related pain. METHODS This triple-blind randomized controlled trial included twenty-two patients (age range 38-85, 10 male) with PD-related pain. Eleven subjects received ten sessions of 20 minutes tDCS over the primary motor cortex contralateral to pain at 2 mA intensity. Eleven subjects received sham stimulation. Outcome measures included changes in the Kinǵs Parkinsońs Pain Scale (KPPS), Brief Pain Inventory (BPI), widespread mechanical hyperalgesia (WMH), temporal summation of pain (TS), and conditioned pain modulation (CPM). RESULTS Significant differences were found in KPPS between groups favoring the active-tDCS group compared to the sham-tDCS group at 15-days follow-up (p = 0.014) but not at 2 days post-intervention (p = 0.059). The active-group showed significant improvements over the sham-group after 15 days (p = 0.017). Significant changes were found in CPM between groups in favor of active-tDCS group at 2 days post-intervention (p = 0.002) and at 15 days (p = 0.017). No meaningful differences were observed in BPI or TS. CONCLUSIONS tDCS of the primary motor cortex alleviates perceived PD-related pain, reduces pain sensitization, and enhances descending pain inhibition. SIGNIFICANCE This is the first study to test and demonstrate the use of tDCS for improving PD-related pain.
Collapse
Affiliation(s)
- Yeray González-Zamorano
- International Doctorate School, Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Universidad Rey Juan Carlos, 28933 Alcorcón, Spain; Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain.
| | - Francisco José Sánchez-Cuesta
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Marcos Moreno-Verdú
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain
| | - Aida Arroyo-Ferrer
- Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain.
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Rey Juan Carlos University, 28933 Alcorcón, Spain; Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain.
| | - K Ray Chaudhuri
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, United Kingdom.
| | - Anna Fieldwalker
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Juan Pablo Romero
- Cognitive Neuroscience, Pain and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain; Brain Injury and Movement Disorders Neurorehabilitation Group (GINDAT), Institute of Life Sciences, Francisco de Vitoria University, Pozuelo de Alarcón, Spain; Faculty of Experimental Sciences, Francisco de Vitoria University, 28223 Pozuelo de Alarcón, Spain; Brain Damage Unit, Beata María Ana Hospital, 28007 Madrid, Spain.
| |
Collapse
|
4
|
Knorst GRS, Souza PRD, Araújo AGPD, Knorst SAF, Diniz DS, Filho HFDS. Transcranial magnetic stimulation in the treatment of phantom limb pain: a systematic review. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-10. [PMID: 38286434 PMCID: PMC10824589 DOI: 10.1055/s-0044-1779051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/07/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Phantom limb pain (PLP) occurs after amputations and can persist in a chronic and debilitating way. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive neuromodulation method capable of influencing brain function and modulating cortical excitability. Its effectiveness in treating chronic pain is promising. OBJECTIVE To evaluate the evidence on the efficacy and safety of using rTMS in the treatment of PLP, observing the stimulation parameters used, side effects, and benefits of the therapy. METHODS This is a systematic review of scientific articles published in national and international literature using electronic platforms. RESULTS Two hundred and fifty two articles were identified. Two hundred and forty six publications were removed because they were duplicated or met the exclusion criteria. After selection, six studies were reviewed, those being two randomized clinical trials and four case reports. All evaluated studies indicated some degree of benefit of rTMS to relieve painful symptoms, even temporarily. Pain perception was lower at the end of treatment when compared to the period prior to the sessions and remained during patient follow-up. There was no standardization of the stimulation parameters used. There were no reports of serious adverse events. The effects of long-term therapy have not been evaluated. CONCLUSION There are some benefits, even if temporary, in the use of rTMS to relieve painful symptoms in PLP. High-frequency stimulation at M1 demonstrated a significant analgesic effect. Given the potential that has been demonstrated, but limited by the paucity of high-quality studies, further controlled studies are needed to establish and standardize the clinical use of the method.
Collapse
Affiliation(s)
| | - Phamella Rocha de Souza
- Universidade Federal de Goiás, Hospital das Clínicas, Departamento de Neurologia, Goiânia GO, Brazil.
| | | | | | - Denise Sisterolli Diniz
- Universidade Federal de Goiás, Hospital das Clínicas, Departamento de Neurologia, Goiânia GO, Brazil.
| | | |
Collapse
|
5
|
Garcia-Larrea L. Non-invasive cortical stimulation for drug-resistant pain. Curr Opin Support Palliat Care 2023; 17:142-149. [PMID: 37339516 DOI: 10.1097/spc.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques are being increasingly used to alleviate pain and enhance quality of life. Non-invasive cortical stimulation was originally intended to predict the efficacy of invasive (neurosurgical) techniques, but has now gained a place as an analgesic procedure in its own right. RECENT FINDINGS Repetitive transcranial magnetic stimulation (rTMS): Evidence from 14 randomised, placebo-controlled trials (~750 patients) supports a significant analgesic effect of high-frequency motor cortex rTMS in neuropathic pain. Dorsolateral frontal stimulation has not proven efficacious so far. The posterior operculo-insular cortex is an attractive target but evidence remains insufficient. Short-term efficacy can be achieved with NNT (numbers needed to treat) ~2-3, but long-lasting efficacy remains a challenge.Like rTMS, transcranial direct-current stimulation (tDCS) induces activity changes in distributed brain networks and can influence various aspects of pain. Lower cost relative to rTMS, few safety issues and availability of home-based protocols are practical advantages. The limited quality of many published reports lowers the level of evidence, which will remain uncertain until more prospective controlled studies are available. SUMMARY Both rTMS and tDCS act preferentially upon abnormal hyperexcitable states of pain, rather than acute or experimental pain. For both techniques, M1 appears to be the best target for chronic pain relief, and repeated sessions over relatively long periods of time may be required to obtain clinically significant benefits. Patients responsive to tDCS may differ from those improved by rTMS.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Centre for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne
- University Hospital Pain Centre (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
6
|
Tan M, Feng Z, Chen H, Min L, Wen H, Liu H, Hou J. Transcranial direct current stimulation regulates phenotypic transformation of microglia to relieve neuropathic pain induced by spinal cord injury. Front Behav Neurosci 2023; 17:1147693. [PMID: 37081929 PMCID: PMC10110883 DOI: 10.3389/fnbeh.2023.1147693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023] Open
Abstract
ObjectiveNeuropathic pain is a common complication after spinal cord injury (SCI). Transcranial direct current stimulation (tDCS) has been confirmed to be effective in relieving neuropathic pain in patients with SCI. The aim of this study is to investigate the effect of tDCS on neuropathic pain induced by SCI and its underlying mechanism.Materials and methodsThe SCI model was induced by a clip-compression injury and tDCS stimulation was performed for two courses (5 days/each). The motor function was evaluated by Basso-Beattie-Bresnahan (BBB) score, and the thermal withdrawal threshold was evaluated by the thermal radiation method. The effects of tDCS on the cerebral cortex, thalamus, midbrain, and medulla were detected by the enzyme-linked immunosorbent assay (ELISA) and immunofluorescence.ResultsThe results showed that SCI reduced the thermal withdrawal threshold and increased the concentration of inflammatory cytokines in the cortex, thalamus, midbrain, and medulla, including the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). In addition, the activation of microglia and the proportion of M1 phenotypic polarization increased significantly in the ventral posterolateral (VPL), ventral tegmental (VTA), and periaqueductal gray (PAG) regions after SCI. After tDCS treatment, the thermal withdrawal threshold and motor function of SCI rats were significantly improved compared to the vehicle group. Meanwhile, tDCS effectively reduced the concentration of pro-inflammatory cytokines in the cortex, thalamus, midbrain, and medulla and increased the concentration of anti-inflammatory cytokines interleukin-10 (IL-10) in the thalamus. In addition, tDCS reduced the proportion of the M1 phenotype of microglia in VPL, VTA, and PAG regions and increase the proportion of the M2 phenotype.ConclusionThe results suggest that tDCS can effectively relieve SCI-induced neuropathic pain. Its mechanism may be related to regulating the inflammatory and anti-inflammatory cytokines in corresponding brain regions via promoting the phenotypic transformation of microglia.
Collapse
Affiliation(s)
- Mingliang Tan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhou Feng
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Lingxia Min
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Huizhong Wen
- Department of Neurobiology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Hongliang Liu
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Hongliang Liu,
| | - Jingming Hou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
- Jingming Hou,
| |
Collapse
|
7
|
Noninvasive Brain Stimulation for Cancer Pain Management in Nonbrain Malignancy: A Meta-Analysis. Eur J Cancer Care (Engl) 2023. [DOI: 10.1155/2023/5612061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Purpose. Noninvasive brain stimulation (NIBS) has been reported to have analgesic effects on fibromyalgia and chronic neuropathic pain; however, its effects on cancer pain have yet to be determined. The present study aimed to evaluate the effects of NIBS on patients with pain secondary to nonbrain malignancy. Methods. Electronic databases including PubMed, Embase, Cochrane Library, and Web of Science were searched from inception through June 5th, 2022. Parallel, randomized, placebo-controlled studies were included that enrolled adult patients with cancer pain, except for that caused by brain tumors, compared NIBS with placebo stimulation, and reported sufficient data for performing meta-analysis. Results. Four parallel, randomized, sham-controlled studies were included: two of repetitive transcranial magnetic stimulation (rTMS), one of transcranial direct current stimulation (tDCS), and one of cranial electrical stimulation (CES). rTMS significantly improved pain in the subgroup analysis (standardized mean difference (SMD): −1.148, 95% confidence interval (CI): −1.660 to −0.637, (
)), while NIBS was not benefited in reducing pain intensity (SMD: −0.632, 95% CI: −1.356 to 0.092, p = 0.087). Also, NIBS significantly improved depressive symptoms (SMD: −0.665, 95% CI: −1.178 to −0.153, p = 0.011), especially in the form of rTMS (SMD: −0.875, 95% CI: −1.356 to −0.395,
) and tDCS (SMD: −1.082, 95% CI: −1.746 to −0.418, p = 0.001). Conclusion. rTMS significantly improved pain secondary to nonbrain malignancy apart from other forms of NIBS without major adverse events.
Collapse
|
8
|
Bielewicz J, Kamieniak M, Szymoniuk M, Litak J, Czyżewski W, Kamieniak P. Diagnosis and Management of Neuropathic Pain in Spine Diseases. J Clin Med 2023; 12:jcm12041380. [PMID: 36835916 PMCID: PMC9961043 DOI: 10.3390/jcm12041380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Neuropathic pain is generally defined as a non-physiological pain experience caused by damage to the nervous system. It can occur spontaneously, as a reaction to a given stimulus, or independently of its action, leading to unusual pain sensations usually referred to as firing, burning or throbbing. In the course of spine disorders, pain symptoms commonly occur. According to available epidemiological studies, a neuropathic component of pain is often present in patients with spinal diseases, with a frequency ranging from 36% to 55% of patients. Distinguishing between chronic nociceptive pain and neuropathic pain very often remains a challenge. Consequently, neuropathic pain is often underdiagnosed in patients with spinal diseases. In reference to current guidelines for the treatment of neuropathic pain, gabapentin, serotonin and norepinephrine reuptake inhibitors and tricyclic antidepressants constitute first-line therapeutic agents. However, long-term pharmacologic treatment often leads to developing tolerance and resistance to used medications. Therefore, in recent years, a plethora of therapeutic methods for neuropathic pain have been developed and investigated to improve clinical outcomes. In this review, we briefly summarized current knowledge about the pathophysiology and diagnosis of neuropathic pain. Moreover, we described the most effective treatment approaches for neuropathic pain and discussed their relevance in the treatment of spinal pain.
Collapse
Affiliation(s)
- Joanna Bielewicz
- Department of Neurology, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Maciej Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Correspondence:
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
9
|
Wang M, Xia R, Shi J, Yang C, Zhang Y, Xu Z, Yu C, Wu Z, Wang M, Chen S, Qu H. Effect of high-frequency repetitive transcranial magnetic stimulation under different intensities upon rehabilitation of chronic pelvic pain syndrome: protocol for a randomized controlled trial. Trials 2023; 24:40. [PMID: 36658610 PMCID: PMC9850513 DOI: 10.1186/s13063-023-07082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION Nearly one in seven women worldwide suffers from chronic pelvic pain syndrome (CPPS) each year. Often, CPPS necessitates a combination of treatments. Studies have shown the good therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) upon CPPS. We wish to undertake a randomized controlled trial (RCT) to observe the effect of high-frequency rTMS at different intensities upon CPPS. METHODS AND ANALYSES In this prospective, double-blinded RCT, 63 female CPPS participants will be recruited and randomized (1:1:1) to high-intensity rTMS, low-intensity rTMS, or sham rTMS. The control group will receive a 10-day course of conventional pelvic floor (PF) rehabilitation (neuromuscular stimulation, magnetic therapy, or light therapy of the PF). On the basis of conventional treatment, participants in the high-intensity rTMS group will receive pulses of 10 Hz with a resting motor threshold (RMT) of 110% for a total of 15,000 pulses. Participants in the low-intensity rTMS group will receive pulses of 10 Hz with an RMT of 80% with 15,000 pulses. The sham rTMS group will be subjected to sham stimulation with the same sound as produced by the real magnetic stimulation coil. The primary outcome will be determined using a visual analog scale, the Genitourinary Pain Index, Zung Self-Rating Anxiety Scale, and Zung Self-Rating Depression Scale. The secondary outcome will be determined by electromyography of the surface of PF muscles at baseline and after treatment completion. ETHICS AND DISSEMINATION This study is approved by the Ethics Committee of Bao'an People's Hospital, Shenzhen, Guangdong Province (approval number: BYL20211203). The results will be submitted for publication in peer-reviewed journals and disseminated at scientific conferences (Protocol version 1.0-20220709). TRIAL REGISTRATION Chictr.org.cn, ID: ChiCTR2200055615. Registered on 14 January 2022, http://www.chictr.org.cn/showproj.aspx?proj=146720 . Protocol version 1.0-20220709.
Collapse
Affiliation(s)
- Mengyang Wang
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Rui Xia
- grid.263488.30000 0001 0472 9649Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jiao Shi
- grid.263488.30000 0001 0472 9649Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chunhua Yang
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yongqing Zhang
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhengxian Xu
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Cancan Yu
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Ziyi Wu
- grid.263488.30000 0001 0472 9649Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Min Wang
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shangjie Chen
- grid.263488.30000 0001 0472 9649Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongdang Qu
- grid.414884.5The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
André-Obadia N, Hodaj H, Hodaj E, Simon E, Delon-Martin C, Garcia-Larrea L. Better Fields or Currents? A Head-to-Head Comparison of Transcranial Magnetic (rTMS) Versus Direct Current Stimulation (tDCS) for Neuropathic Pain. Neurotherapeutics 2023; 20:207-219. [PMID: 36266501 PMCID: PMC10119368 DOI: 10.1007/s13311-022-01303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 10/24/2022] Open
Abstract
While high-frequency transcranial magnetic stimulation (HF-rTMS) is now included in the armamentarium to treat chronic neuropathic pain (NP), direct-current anodal stimulation (a-tDCS) to the same cortical targets may represent a valuable alternative in terms of feasibility and cost. Here we performed a head-to-head, randomized, single-blinded, cross-over comparison of HF-rTMS versus a-tDCS over the motor cortex in 56 patients with drug-resistant NP, who received 5 daily sessions of each procedure, with a washout of at least 4 weeks. Daily scores of pain, sleep, and fatigue were obtained during 5 consecutive weeks, and functional magnetic resonance imaging (fMRI) to a motor task was performed in a subgroup of 31 patients. The percentage of responders, defined by a reduction in pain scores of > 2 SDs from pre-stimulus levels, was similar to both techniques (42.0% vs. 42.3%), while the magnitude of "best pain relief" was significantly skewed towards rTMS. Mean pain ratings in responders decreased by 32.6% (rTMS) and 29.6% (tDCS), with half of them being sensitive to only one technique. Movement-related fMRI showed significant activations in motor and premotor areas, which did not change after 5 days of stimulation, and did not discriminate responders from non-responders. Both HF-rTMS and a-tDCS showed efficacy at 1 month in drug-resistant NP, with magnitude of relief slightly favoring rTMS. Since a significant proportion of patients responded to one procedure only, both modalities should be tested before declaring a patient as unresponsive.
Collapse
Affiliation(s)
- Nathalie André-Obadia
- Neurophysiology & Epilepsy Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, 59 Boulevard Pinel, 69677, Bron Cedex, France.
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France.
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France.
| | - Hasan Hodaj
- Pain Center, Department of Anaesthesia and Intensive Care, Grenoble Alpes University Hospital, Grenoble, France
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Enkelejda Hodaj
- Clinical Pharmacology Department, Inserm CIC1406, Grenoble Alpes University Hospital, Grenoble, France
| | - Emile Simon
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
- Functional and Stereotactic Neurosurgical Unit, Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Luis Garcia-Larrea
- University Hospital Pain Center (CETD), Neurological Hospital P. Wertheimer, Hospices Civils de Lyon, Lyon, France
- NeuroPain Lab, INSERM U1028, UMR5292, Lyon Neuroscience Research Center, CNRS, University Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
11
|
Chang TT, Chang YH, Du SH, Chen PJ, Wang XQ. Non-invasive brain neuromodulation techniques for chronic low back pain. Front Mol Neurosci 2022; 15:1032617. [PMID: 36340685 PMCID: PMC9627199 DOI: 10.3389/fnmol.2022.1032617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Structural and functional changes of the brain occur in many chronic pain conditions, including chronic low back pain (CLBP), and these brain abnormalities can be reversed by effective treatment. Research on the clinical applications of non-invasive brain neuromodulation (NIBS) techniques for chronic pain is increasing. Unfortunately, little is known about the effectiveness of NIBS on CLBP, which limits its application in clinical pain management. Therefore, we summarized the effectiveness and limitations of NIBS techniques on CLBP management and described the effects and mechanisms of NIBS approaches on CLBP in this review. Overall, NIBS may be effective for the treatment of CLBP. And the analgesic mechanisms of NIBS for CLBP may involve the regulation of pain signal pathway, synaptic plasticity, neuroprotective effect, neuroinflammation modulation, and variations in cerebral blood flow and metabolism. Current NIBS studies for CLBP have limitations, such as small sample size, relative low quality of evidence, and lack of mechanistic studies. Further studies on the effect of NIBS are needed, especially randomized controlled trials with high quality and large sample size.
Collapse
Affiliation(s)
- Tian-Tian Chang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Hao Chang
- Department of Luoyang Postgraduate Training, Henan University of Traditional Chinese Medicine, Luoyang, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- *Correspondence: Pei-Jie Chen,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
12
|
Navarro-López V, Del-Valle-Gratacós M, Fernández-Vázquez D, Fernández-González P, Carratalá-Tejada M, Molina-Rueda F. Transcranial direct current stimulation in the management of phantom limb pain: a systematic review of randomized controlled trials. Eur J Phys Rehabil Med 2022; 58:738-748. [PMID: 35758072 PMCID: PMC10019480 DOI: 10.23736/s1973-9087.22.07439-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Phantom limb pain (PLP) after amputation is a frequent entity that conditions the life of those who suffer it. Current treatment methods are not sufficiently effective for PLP management. We aim to analyze the clinical application of transcranial direct current (tDCS) in people with amputation suffering from PLP. EVIDENCE ACQUISITION The following databases were consulted in September 2021: MEDLINE, EMBASE, The Web of Science, PEDro, SCOPUS and SciELO. Randomized controlled trials investigating the use of tDCS in people with amputation undergoing PLP were selected. Demographic data, type and cause of amputation, time since amputation, stimulation parameters, and outcomes were extracted. EVIDENCE SYNTHESIS Six articles were included in this review (seven studies were considered because one study performed two individual protocols). All included studies evaluated PLP; six evaluated the phantom limb sensations (PLS) and two evaluated the psychiatric disorders. In all included studies the intensity and frequency of PLP was reduced, in three PLS were reduced, and in none study psychiatric symptoms were modified. CONCLUSIONS Anodic tDCS over the contralateral M1 to the affected limb, with an intensity of 1-2 mA, for 15-20 minutes seems to significantly reduce PLP in people with amputation. Single-session treatment could modify PLP intensity for hours, and multi-session treatment could modify PLP for months. Limited evidence suggests that PLS and psychiatric disorders should be treated with different PLP electrode placements. Further studies with larger sample size and longer follow-up times are needed to establish the priority of tDCS application in the PLP management.
Collapse
Affiliation(s)
- Víctor Navarro-López
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | | | - Diego Fernández-Vázquez
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
- International Doctoral School, Faculty of Health Sciences, Rey Juan Carlos University, Madrid, Spain
| | - Pilar Fernández-González
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - María Carratalá-Tejada
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain -
| | - Francisco Molina-Rueda
- Motion Analysis, Biomechanics, Ergonomy and Motor Control Laboratory (LAMBECOM group), Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| |
Collapse
|
13
|
Tomeh A, Yusof Khan AHK, Inche Mat LN, Basri H, Wan Sulaiman WA. Repetitive Transcranial Magnetic Stimulation of the Primary Motor Cortex beyond Motor Rehabilitation: A Review of the Current Evidence. Brain Sci 2022; 12:brainsci12060761. [PMID: 35741646 PMCID: PMC9221422 DOI: 10.3390/brainsci12060761] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has emerged as a novel technique to stimulate the human brain through the scalp. Over the years, identifying the optimal brain region and stimulation parameters has been a subject of debate in the literature on therapeutic uses of repetitive TMS (rTMS). Nevertheless, the primary motor cortex (M1) has been a conventional target for rTMS to treat motor symptoms, such as hemiplegia and spasticity, as it controls the voluntary movement of the body. However, with an expanding knowledge base of the M1 cortical and subcortical connections, M1-rTMS has shown a therapeutic efficacy that goes beyond the conventional motor rehabilitation to involve pain, headache, fatigue, dysphagia, speech and voice impairments, sleep disorders, cognitive dysfunction, disorders of consciousness, anxiety, depression, and bladder dysfunction. In this review, we summarize the latest evidence on using M1-rTMS to treat non-motor symptoms of diverse etiologies and discuss the potential mechanistic rationale behind the management of each of these symptoms.
Collapse
Affiliation(s)
- Abdulhameed Tomeh
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Abdul Hanif Khan Yusof Khan
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Liyana Najwa Inche Mat
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Hamidon Basri
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
| | - Wan Aliaa Wan Sulaiman
- Department of Neurology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (A.T.); (A.H.K.Y.K.); (L.N.I.M.); (H.B.)
- Malaysian Research Institute on Ageing (MyAgeingTM), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: ; Tel.: +60-3-9769-5560
| |
Collapse
|
14
|
Xiong HY, Zheng JJ, Wang XQ. Non-invasive Brain Stimulation for Chronic Pain: State of the Art and Future Directions. Front Mol Neurosci 2022; 15:888716. [PMID: 35694444 PMCID: PMC9179147 DOI: 10.3389/fnmol.2022.888716] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
As a technique that can guide brain plasticity, non-invasive brain stimulation (NIBS) has the potential to improve the treatment of chronic pain (CP) because it can interfere with ongoing brain neural activity to regulate specific neural networks related to pain management. Treatments of CP with various forms of NIBS, such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), using new parameters of stimulation have achieved encouraging results. Evidence of moderate quality indicates that high-frequency rTMS of the primary motor cortex has a clear effect on neuropathic pain (NP) and fibromyalgia. However, evidence on its effectiveness regarding pain relief in other CP conditions is conflicting. Concerning tDCS, evidence of low quality supports its benefit for CP treatment. However, evidence suggesting that it exerts a small treatment effect on NP and headaches is also conflicting. In this paper, we describe the underlying principles behind these commonly used stimulation techniques; and summarize the results of randomized controlled trials, systematic reviews, and meta-analyses. Future research should focus on a better evaluation of the short-term and long-term effectiveness of all NIBS techniques and whether they decrease healthcare use, as well as on the refinement of selection criteria.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | | | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
15
|
Yang QH, Zhang YH, Du SH, Wang YC, Fang Y, Wang XQ. Non-invasive Brain Stimulation for Central Neuropathic Pain. Front Mol Neurosci 2022; 15:879909. [PMID: 35663263 PMCID: PMC9162797 DOI: 10.3389/fnmol.2022.879909] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
The research and clinical application of the noninvasive brain stimulation (NIBS) technique in the treatment of neuropathic pain (NP) are increasing. In this review article, we outline the effectiveness and limitations of the NIBS approach in treating common central neuropathic pain (CNP). This article summarizes the research progress of NIBS in the treatment of different CNPs and describes the effects and mechanisms of these methods on different CNPs. Repetitive transcranial magnetic stimulation (rTMS) analgesic research has been relatively mature and applied to a variety of CNP treatments. But the optimal stimulation targets, stimulation intensity, and stimulation time of transcranial direct current stimulation (tDCS) for each type of CNP are still difficult to identify. The analgesic mechanism of rTMS is similar to that of tDCS, both of which change cortical excitability and synaptic plasticity, regulate the release of related neurotransmitters and affect the structural and functional connections of brain regions associated with pain processing and regulation. Some deficiencies are found in current NIBS relevant studies, such as small sample size, difficulty to avoid placebo effect, and insufficient research on analgesia mechanism. Future research should gradually carry out large-scale, multicenter studies to test the stability and reliability of the analgesic effects of NIBS.
Collapse
Affiliation(s)
- Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yong-Hui Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Chen Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu Fang
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
- *Correspondence: Yu Fang,
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| |
Collapse
|
16
|
Tang Y, Chen H, Zhou Y, Tan ML, Xiong SL, Li Y, Ji XH, Li YS. Analgesic Effects of Repetitive Transcranial Magnetic Stimulation in Patients With Advanced Non-Small-Cell Lung Cancer: A Randomized, Sham-Controlled, Pilot Study. Front Oncol 2022; 12:840855. [PMID: 35372024 PMCID: PMC8969560 DOI: 10.3389/fonc.2022.840855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/25/2022] [Indexed: 12/30/2022] Open
Abstract
Objective Current pharmacological intervention for the cancer-related pain is still limited. The aim of this study was to explore whether repetitive transcranial magnetic stimulation (rTMS) could be an effective adjuvant therapy to reduce pain in patients with advanced non-small cell lung cancer (NSCLC). Methods This was a randomized, sham–controlled study. A total of 41 advanced NSCLC patients with uncontrolled pain (score≥4 on pain intensity assessed with an 11-point numeric rating scale) were randomized to receive active (10 Hz, 2000 stimuli) (n = 20) or sham rTMS (n = 20) for 3 weeks. Pain was the primary outcome and was assessed with the Numeric Rating Scale (NRS). Secondary outcomes were oral morphine equivalent (OME) daily dose, quality of life (WHO Quality of Life-BREF), and psychological distress (the Hospital Depression and Anxiety Scale). All outcomes were measured at baseline, 3 days, 1 week, 2 weeks, and 3 weeks. Results The pain intensity in both groups decreased gradually from day 3 and decreased to the lowest at the week 3, with a decrease rate of 41.09% in the rTMS group and 23.23% in the sham group. The NRS score of the rTMS group was significantly lower than that of the sham group on the week 2 (p < 0.001, Cohen’s d =1.135) and week 3 (p=0.017, Cohen’s d = -0.822). The OME daily dose, physiology and psychology domains of WHOQOL-BREF scores, as well as the HAM-A and HAM-D scores all were significantly improved at week 3 in rTMS group. Conclusion Advanced NSCL patients with cancer pain treated with rTMS showed better greater pain relief, lower dosage of opioid, and better mood states and quality of life. rTMS is expected to be a new effective adjuvant therapy for cancer pain in advanced NSCLC patients.
Collapse
Affiliation(s)
- Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Han Chen
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Zhou
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ming-Liang Tan
- Department of Rehabilitation, Southwest Hospital, Army Medical University, Chongqing, China
| | - Shuang-Long Xiong
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yan Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiao-Hui Ji
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Sheng Li
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
17
|
Garcia-Larrea L, Quesada C. Cortical stimulation for chronic pain: from anecdote to evidence. Eur J Phys Rehabil Med 2022; 58:290-305. [PMID: 35343176 PMCID: PMC9980528 DOI: 10.23736/s1973-9087.22.07411-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epidural stimulation of the motor cortex (eMCS) was devised in the 1990's, and has now largely supplanted thalamic stimulation for neuropathic pain relief. Its mechanisms of action involve activation of multiple cortico-subcortical areas initiated in the thalamus, with involvement of endogenous opioids and descending inhibition toward the spinal cord. Evidence for clinical efficacy is now supported by at least seven RCTs; benefits may persist up to 10 years, and can be reasonably predicted by preoperative use of non-invasive repetitive magnetic stimulation (rTMS). rTMS first developed as a means of predicting the efficacy of epidural procedures, then as an analgesic method on its own right. Reasonable evidence from at least six well-conducted RCTs favors a significant analgesic effect of high-frequency rTMS of the motor cortex in neuropathic pain (NP), and less consistently in widespread/fibromyalgic pain. Stimulation of the dorsolateral frontal cortex (DLPFC) has not proven efficacious for pain, so far. The posterior operculo-insular cortex is a new and attractive target but evidence remains inconsistent. Transcranial direct current stimulation (tDCS) is applied upon similar targets as rTMS and eMCS; it does not elicit action potentials but modulates the neuronal resting membrane state. tDCS presents practical advantages including low cost, few safety issues, and possibility of home-based protocols; however, the limited quality of most published reports entails a low level of evidence. Patients responsive to tDCS may differ from those improved by rTMS, and in both cases repeated sessions over a long time may be required to achieve clinically significant relief. Both invasive and non-invasive procedures exert their effects through multiple distributed brain networks influencing the sensory, affective and cognitive aspects of chronic pain. Their effects are mainly exerted upon abnormally sensitized pathways, rather than on acute physiological pain. Extending the duration of long-term benefits remains a challenge, for which different strategies are discussed in this review.
Collapse
Affiliation(s)
- Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France - .,University Hospital Pain Center (CETD), Neurological Hospital, Hospices Civils de Lyon, Lyon, France -
| | - Charles Quesada
- Central Integration of Pain (NeuroPain) Lab, Lyon Center for Neuroscience (CRNL), INSERM U1028, University Claude Bernard Lyon 1, Villeurbanne, France.,Department of Physiotherapy, Sciences of Rehabilitation Institute (ISTR), University Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
18
|
Sorkpor SK, Ahn H. Transcranial direct current and transcranial magnetic stimulations for chronic pain. Curr Opin Anaesthesiol 2021; 34:781-785. [PMID: 34419991 DOI: 10.1097/aco.0000000000001056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Chronic pain is debilitating and difficult to treat with pharmacotherapeutics alone. Consequently, exploring alternative treatment methods for chronic pain is essential. Noninvasive brain stimulation techniques, such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are increasingly being investigated for their neuropharmacological effects in the treatment of chronic pain. This review aims to examine and evaluate the present state of evidence regarding the use of tDCS and TMS in the treatment of chronic pain. RECENT FINDINGS Despite conflicting evidence in the early literature, evidence from recent rigorous research supports the use of tDCS and TMS in treating chronic pain conditions. For both tDCS and TMS, standardized stimulation parameters have been identified with the recommendation for repeated maintenance stimulation to ensure that the analgesic effect is sustained beyond discontinuation of therapy. SUMMARY Due to a lack of defined stimulation protocols, early findings on the efficacy of tDCS and TMS are mixed. Although the application of tDCS and TMS as pain relief approaches is still in its early stages, the introduction of standardized stimulation protocols is paving the way for more robust and informed research.
Collapse
Affiliation(s)
- Setor K Sorkpor
- Cizik School of Nursing, University of Texas Health Science Center, Houston, Texas
| | - Hyochol Ahn
- College of Nursing, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
19
|
Mori N, Hosomi K, Nishi A, Dong D, Yanagisawa T, Khoo HM, Tani N, Oshino S, Saitoh Y, Kishima H. Difference in Analgesic Effects of Repetitive Transcranial Magnetic Stimulation According to the Site of Pain. Front Hum Neurosci 2021; 15:786225. [PMID: 34899224 PMCID: PMC8662379 DOI: 10.3389/fnhum.2021.786225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex for neuropathic pain has been shown to be effective, according to systematic reviews and therapeutic guidelines. However, our large, rigorous, investigator-initiated, registration-directed clinical trial failed to show a positive primary outcome, and its subgroup analysis suggested that the analgesic effect varied according to the site of pain. The aim of this study was to investigate the differences in analgesic effects of rTMS for neuropathic pain between different pain sites by reviewing our previous clinical trials. We included three clinical trials in this mini meta-analysis: a multicenter randomized controlled trial at seven hospitals (N = 64), an investigator-initiated registration-directed clinical trial at three hospitals (N = 142), and an exploratory clinical trial examining different stimulation parameters (N = 22). The primary efficacy endpoint (change in pain scale) was extracted for each patient group with pain in the face, upper limb, or lower limb, and a meta-analysis of the efficacy of active rTMS against sham stimulation was performed. Standardized mean difference (SMD) with 95% confidence interval (CI) was calculated for pain change using a random-effects model. The analgesic effect of rTMS for upper limb pain was favorable (SMD = -0.45, 95% CI: -0.77 to -0.13). In contrast, rTMS did not produce significant pain relief on lower limb pain (SMD = 0.04, 95% CI: -0.33 to 0.41) or face (SMD = -0.24, 95% CI: -1.59 to 1.12). In conclusion, these findings suggest that rTMS provides analgesic effects in patients with neuropathic pain in the upper limb, but not in the lower limb or face, under the conditions of previous clinical trials. Owing to the main limitation of small number of studies included, many aspects should be clarified by further research and high-quality studies in these patients.
Collapse
Affiliation(s)
- Nobuhiko Mori
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Koichi Hosomi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,*Correspondence: Koichi Hosomi,
| | - Asaya Nishi
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Dong Dong
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan,Osaka University Institute for Advanced Co-Creation Studies, Suita, Japan
| | - Hui Ming Khoo
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Naoki Tani
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Youichi Saitoh
- Department of Mechanical Science and Bioengineering, Osaka University Graduate School of Engineering Science, Toyonaka, Japan,Tokuyukai Rehabilitation Clinic, Toyonaka, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|