1
|
Szwec S, Kapłucha Z, Chamberlain JS, Konieczny P. Dystrophin- and Utrophin-Based Therapeutic Approaches for Treatment of Duchenne Muscular Dystrophy: A Comparative Review. BioDrugs 2024; 38:95-119. [PMID: 37917377 PMCID: PMC10789850 DOI: 10.1007/s40259-023-00632-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
Duchenne muscular dystrophy is a devastating disease that leads to progressive muscle loss and premature death. While medical management focuses mostly on symptomatic treatment, decades of research have resulted in first therapeutics able to restore the affected reading frame of dystrophin transcripts or induce synthesis of a truncated dystrophin protein from a vector, with other strategies based on gene therapy and cell signaling in preclinical or clinical development. Nevertheless, recent reports show that potentially therapeutic dystrophins can be immunogenic in patients. This raises the question of whether a dystrophin paralog, utrophin, could be a more suitable therapeutic protein. Here, we compare dystrophin and utrophin amino acid sequences and structures, combining published data with our extended in silico analyses. We then discuss these results in the context of therapeutic approaches for Duchenne muscular dystrophy. Specifically, we focus on strategies based on delivery of micro-dystrophin and micro-utrophin genes with recombinant adeno-associated viral vectors, exon skipping of the mutated dystrophin pre-mRNAs, reading through termination codons with small molecules that mask premature stop codons, dystrophin gene repair by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated genetic engineering, and increasing utrophin levels. Our analyses highlight the importance of various dystrophin and utrophin domains in Duchenne muscular dystrophy treatment, providing insights into designing novel therapeutic compounds with improved efficacy and decreased immunoreactivity. While the necessary actin and β-dystroglycan binding sites are present in both proteins, important functional distinctions can be identified in these domains and some other parts of truncated dystrophins might need redesigning due to their potentially immunogenic qualities. Alternatively, therapies based on utrophins might provide a safer and more effective approach.
Collapse
Affiliation(s)
- Sylwia Szwec
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zuzanna Kapłucha
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Jeffrey S Chamberlain
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98109-8055, USA
| | - Patryk Konieczny
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Attias Cohen S, Simaan-Yameen H, Fuoco C, Gargioli C, Seliktar D. Injectable hydrogel microspheres for sustained gene delivery of antisense oligonucleotides to restore the expression of dystrophin protein in duchenne muscular dystrophy. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
3
|
Iftikhar M, Frey J, Shohan MJ, Malek S, Mousa SA. Current and emerging therapies for Duchenne muscular dystrophy and spinal muscular atrophy. Pharmacol Ther 2020; 220:107719. [PMID: 33130193 DOI: 10.1016/j.pharmthera.2020.107719] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
Many neuromuscular diseases are genetically inherited or caused by mutations in motor function proteins. Two of the most prevalent neuromuscular diseases are Duchenne Muscular Dystrophy (DMD) and Spinal Muscular Atrophy (SMA), which are often diagnosed during the early years of life, contributing to life-long debilitation and shorter longevity. DMD is caused by mutations in the dystrophin gene resulting in critical muscle wasting, with cardiac or respiratory failure by age 30. Lack of dystrophin protein is the leading cause of degeneration of skeletal and cardiac muscle. Corticosteroids and artificial respirators remain as the gold-standard management of complications and have significantly extended the life span of these patients. Additionally, drug therapies including eteplirsen (EXONDYS 51®), golodirsen (VYONDYS 53™), and viltolarsen (VILTEPSO®) have been approved by the FDA to treat specific types of DMD. SMA is defined by the degeneration of the anterior horn cells in the spinal cord and destruction of motor neuron nuclei in the lower brain-stem caused by SMN1 gene deletion. Loss of SMN1 protein is partly compensated by SMN2 protein synthesis with disease severity being affected by the success of SMN2 gene synthesis. Evidence-based recommendations for SMA are directed towards supportive therapy and providing adequate nutrition and respiratory assistance as needed. Treatment and prevention of complications of muscle weakness are crucial for reducing the phenotype expression of SMA. Furthermore, drug therapies including injectables such as onasemnogene abeparvovec-xioi (ZOLGENSMA®), nusinersen (SPINRAZA®), and an oral-solution, risdiplam (EVRYSDI™), are medications that have been FDA-approved for the treatment of SMA. This review discusses the current and emerging therapeutic options for patients with DMD and SMA.
Collapse
Affiliation(s)
- Mohsan Iftikhar
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America
| | - Justin Frey
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America
| | - Md Jasimuddin Shohan
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America
| | - Sohail Malek
- Department of Pediatric Neurology, Albany Medical Center, Albany, NY 12208, United States of America
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States of America.
| |
Collapse
|
4
|
Kim J, Jung IY, Kim SJ, Lee JY, Park SK, Shin HI, Bang MS. A New Functional Scale and Ambulatory Functional Classification of Duchenne Muscular Dystrophy: Scale Development and Preliminary Analyses of Reliability and Validity. Ann Rehabil Med 2018; 42:690-701. [PMID: 30404418 PMCID: PMC6246862 DOI: 10.5535/arm.2018.42.5.690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022] Open
Abstract
Objective To develop a simplified functional scale and classification system to evaluate the functional abilities of patients with Duchenne muscular dystrophy (DMD). Methods A Comprehensive Functional Scale for DMD (CFSD) was developed using the modified Delphi method. The accompanying Ambulatory Functional Classification System for DMD (AFCSD) was developed based on previously published classification systems. Results The CFSD consists of 21 items and 78 sub-items, assessing body structure and function, activities, and participation. Inter-rater intraclass correlation coefficient values were above 0.7 for 17 items. The overall limits of agreement between the two examiners ranged from -6.21 to 3.11. The Spearman correlation coefficient between the total score on the AFCSD and the Vignos Functional Scale was 0.833, and 0.714 between the total score of the AFCSD and the Brooke scale. Significant negative correlations existed between the total score for each functional level of the AFCSD and each functional grade of the Vignos and Brooke scales. The total scores of the CFSD varied significantly between the functional grades of the Vignos scale, and specific grades of the Brooke scale. For the AFCSD, total scores of the CFSD varied significantly between the functional levels. Conclusion We have developed a new scale and the associated classification system, to assess the functional ability of children diagnosed with DMD. Preliminary evaluation of the psychometric properties of the functional scale and classification systems indicate sufficient reliability and concurrent validity.
Collapse
Affiliation(s)
- Jungyoon Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea.,Ewha Brain Institute, Ewha Womans University, Seoul, Korea
| | - Il-Young Jung
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Physical Medicine and Rehabilitation, Chungnam National University Hospital, Daejeon, Korea
| | - Sang Jun Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Physical and Rehabilitation Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joong-Yub Lee
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sue Kyung Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea.,Department of Biomedical Science, Graduate School of Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Hyung-Ik Shin
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Moon Suk Bang
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Bozycki L, Łukasiewicz K, Matryba P, Pikula S. Whole-body clearing, staining and screening of calcium deposits in the mdx mouse model of Duchenne muscular dystrophy. Skelet Muscle 2018; 8:21. [PMID: 30025544 PMCID: PMC6053777 DOI: 10.1186/s13395-018-0168-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/28/2018] [Indexed: 11/13/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a fatal, X-linked genetic disorder. Although DMD is the most common form of muscular dystrophy, only two FDA-approved drugs were developed to delay its progression. In order to assess therapies for treating DMD, several murine models have recently been introduced. As the wide variety of murine models enlighten mechanisms underlying DMD pathology, the question on how to monitor the progression of the disease within the entire musculoskeletal system still remains to be answered. One considerable approach to monitor such progression is histological evaluation of calcium deposits within muscle biopsies. Although accurate, histology is limited to small tissue area and cannot be utilized to evaluate systemic progression of DMD. Therefore, we aimed to develop a methodology suitable for rapid and high-resolution screening of calcium deposits within the entire murine organism. Methods Procedures were performed on adult male C57BL/10-mdx and adult male C57BL mice. Animals were sacrificed, perfused, paraformaldehyde-fixed, and subjected to whole-body clearing using optimized perfusion-based CUBIC protocol. Next, cleared organisms were stained with alizarin red S to visualize calcium deposits and subjected to imaging. Results Study revealed presence of calcium deposits within degenerated muscles of the entire C57BL/10-mdx mouse organism. Calcified deposits were observed within skeletal muscles of the forelimb, diaphragm, lumbar region, pelvic region, and hindlimb. Calcified deposits found in quadriceps femoris, triceps brachii, and spinalis pars lumborum were characterized. Analysis of cumulative frequency distribution showed different distribution characteristics of calcified deposits in quadriceps femoris muscle in comparison to triceps brachii and spinalis pars lumborum muscles (p < 0.001) and quadriceps femoris vs spinalis pars lumborum (p < 0.001). Differences between the number of calcified deposits in selected muscles, their volume, and average volume were statistically significant. Conclusions In aggregate, we present new methodology to monitor calcium deposits in situ in the mouse model of Duchenne muscular dystrophy. Sample imaging with the presented setup is feasible and applicable for whole-organ/body imaging. Accompanied by the development of custom-made LSFM apparatus, it allows targeted and precise characterization of calcium deposits in cleared muscles. Hence, presented approach might be broadly utilized to monitor degree to which muscles of the entire organism are affected by the necrosis and how is it altered by the treatment or physical activity of the animal. We believe that this would be a valuable tool for studying organs alternations in a wide group of animal models of muscle dystrophy and bone-oriented diseases. Electronic supplementary material The online version of this article (10.1186/s13395-018-0168-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lukasz Bozycki
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Kacper Łukasiewicz
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Paweł Matryba
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, 5 Nielubowicza Street, 02-097, Warsaw, Poland
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| |
Collapse
|
6
|
Rodrigues M, Echigoya Y, Fukada SI, Yokota T. Current Translational Research and Murine Models For Duchenne Muscular Dystrophy. J Neuromuscul Dis 2018; 3:29-48. [PMID: 27854202 PMCID: PMC5271422 DOI: 10.3233/jnd-150113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short generation time, they have helped to elucidate the pathobiology of dystrophin deficiency and to assess therapies for treating DMD. Recently, several murine models have been developed by our group and others to be more representative of the human DMD mutation types and phenotypes. For instance, mdx mice on a DBA/2 genetic background, developed by Fukada et al., have lower regenerative capacity and exhibit very severe phenotype. Cmah-deficient mdx mice display an accelerated disease onset and severe cardiac phenotype due to differences in glycosylation between humans and mice. Other novel murine models include mdx52, which harbors a deletion mutation in exon 52, a hot spot region in humans, and dystrophin/utrophin double-deficient (dko), which displays a severe dystrophic phenotype due the absence of utrophin, a dystrophin homolog. This paper reviews the pathological manifestations and recent therapeutic developments in murine models of DMD such as standard mdx (C57BL/10), mdx on C57BL/6 background (C57BL/6-mdx), mdx52, dystrophin/utrophin double-deficient (dko), mdxβgeo, Dmd-null, humanized DMD (hDMD), mdx on DBA/2 background (DBA/2-mdx), Cmah-mdx, and mdx/mTRKO murine models.
Collapse
Affiliation(s)
- Merryl Rodrigues
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - Yusuke Echigoya
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| | - So-Ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada.,Muscular Dystrophy Canada Research Chair, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Delalande O, Molza AE, Dos Santos Morais R, Chéron A, Pollet É, Raguenes-Nicol C, Tascon C, Giudice E, Guilbaud M, Nicolas A, Bondon A, Leturcq F, Férey N, Baaden M, Perez J, Roblin P, Piétri-Rouxel F, Hubert JF, Czjzek M, Le Rumeur E. Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions. J Biol Chem 2018. [PMID: 29535188 DOI: 10.1074/jbc.m117.809798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Dystrophin, encoded by the DMD gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the DMD gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins. However, the effects caused by these deletions, ranging from asymptomatic to severe BMD, argue against the central domain serving only as a featureless scaffold. We undertook structural studies combining small-angle X-ray scattering and molecular modeling in an effort to uncover the structure of the central domain, as dystrophin has been refractory to characterization. We show that this domain appears to be a tortuous and complex filament that is profoundly disorganized by the most severe BMD deletion (loss of exons 45-47). Despite the preservation of large parts of the binding site for neuronal nitric oxide synthase (nNOS) in this deletion, computational approaches failed to recreate the association of dystrophin with nNOS. This observation is in agreement with a strong decrease of nNOS immunolocalization in muscle biopsies, a parameter related to the severity of BMD phenotypes. The structural description of the whole dystrophin central domain we present here is a first necessary step to improve the design of microdystrophin constructs toward the goal of a successful gene therapy for DMD.
Collapse
Affiliation(s)
- Olivier Delalande
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France,
| | - Anne-Elisabeth Molza
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Raphael Dos Santos Morais
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France.,the Synchrotron SOLEIL, 91190 Saint Aubin, France.,the Laboratoire Léon-Brillouin, UMR 12 CEA-CNRS, Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Angélique Chéron
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Émeline Pollet
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Céline Raguenes-Nicol
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Christophe Tascon
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Emmanuel Giudice
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Marine Guilbaud
- the Sorbonne Universités UPMC-INSERM-UMRS 97-CNRS FRE 3617, Institut de Myologie, 75013 Paris, France
| | - Aurélie Nicolas
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Arnaud Bondon
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France.,the Université Rennes, CNRS, Institut des Sciences Chimiques de Rennes-UMR 6226, PRISM, 35000 Rennes, France
| | - France Leturcq
- the Sorbonne Universités UPMC-INSERM-UMRS 97-CNRS FRE 3617, Institut de Myologie, 75013 Paris, France.,the AP-HP, Groupe Hospitalier Cochin-Broca-Hôtel Dieu, Laboratoire de Biochimie et Génétique Moléculaire, 75014 Paris, France
| | - Nicolas Férey
- the CNRS UPR3251, Université Paris XI, 91403 Orsay Cedex, France
| | - Marc Baaden
- the CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - Javier Perez
- the Synchrotron SOLEIL, 91190 Saint Aubin, France
| | - Pierre Roblin
- the Synchrotron SOLEIL, 91190 Saint Aubin, France.,the INRA-Biopolymères, Interaction et Assemblages, 44000 Nantes, France
| | - France Piétri-Rouxel
- the Sorbonne Universités UPMC-INSERM-UMRS 97-CNRS FRE 3617, Institut de Myologie, 75013 Paris, France
| | - Jean-François Hubert
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| | - Mirjam Czjzek
- the Sorbonne Universités, UPMC Université Paris 06, 75006 Paris, France, and.,the CNRS UMR 8227, Integrative Biology of Marine Models, 29688 Roscoff Cedex, France
| | - Elisabeth Le Rumeur
- From the Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes-UMR 6290, 35000 Rennes, France
| |
Collapse
|
8
|
Peay HL, Biesecker BB, Wilfond BS, Jarecki J, Umstead KL, Escolar DM, Tibben A. Barriers and facilitators to clinical trial participation among parents of children with pediatric neuromuscular disorders. Clin Trials 2018; 15:139-148. [PMID: 29475375 DOI: 10.1177/1740774517751118] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIMS Pediatric rare disease presents a challenging situation of high unmet need and a limited pool of potential clinical trial participants. Understanding perspectives of parents of children who have not participated in trials may facilitate approaches to optimize participation rates. The objective of this study was to explore factors associated with parental interest in enrolling children with pediatric neuromuscular disorders in clinical trials. METHODS Parents of individuals with Duchenne or Becker muscular dystrophy and spinal muscular atrophy were recruited through advocacy organizations, a registry, and clinics. These parents ( N = 203) completed a questionnaire including assessments of barriers and facilitators to clinical trial participation, parents' interest in trial participation, and their perceptions of others' views about participation in a clinical trial. RESULTS Trial interest in participating parents was high (64% combined group). The most highly endorsed barrier to participation was the possibility of receiving placebo, followed by not having enough information on risks and trial procedures. Compared to parents of children with Duchenne or Becker muscular dystrophy, parents of children with spinal muscular atrophy endorsed significantly more information and knowledge barriers. The greatest facilitators of participation were (1) confidence in improving disease understanding and (2) guarantee to receive the treatment after a successful trial. A logistic regression model, χ2 (4, n = 188) = 80.64, p < .001, indicated that higher perceived barriers and more frequent trial communication by the provider were associated with lower interest, while positive trial perceptions by the child's providers and concordance in trial perceptions among those close to the decision-maker were associated with higher interest. CONCLUSION We found high parental interest in pediatric neuromuscular trials that was tempered by concerns about the potential for randomization to a placebo arm. Participants perceived that their trial participation would be facilitated by additional education and guidance from their clinicians. Yet, intentions were negatively associated with frequency of provider communication, perhaps reflecting waning parental interest with a greater understanding of limitations in trial access, increased sophistication in their understanding of trial design, and appreciation of potential burden. To support parents' informed decisions, it is important to educate them to evaluate the quality of research, as well as providing lay information explaining the use of placebo, trial processes, and potential barriers to long-term drug access. Our findings should inform the development of targeted educational content, clinician training, and decision support tools.
Collapse
Affiliation(s)
- Holly L Peay
- 1 RTI International, Research Triangle Park, NC, USA.,2 Parent Project Muscular Dystrophy, Hackensack, NJ, USA
| | - Barbara B Biesecker
- 3 Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kendall L Umstead
- 3 Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Aad Tibben
- 7 Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
Salmaninejad A, Valilou SF, Bayat H, Ebadi N, Daraei A, Yousefi M, Nesaei A, Mojarrad M. Duchenne muscular dystrophy: an updated review of common available therapies. Int J Neurosci 2018; 128:854-864. [PMID: 29351004 DOI: 10.1080/00207454.2018.1430694] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND PURPOSE Duchenne muscular dystrophy (DMD) is a lethal progressive pediatric muscle disorder and genetically inherited as an X-linked disease that caused by mutations in the dystrophin gene. DMD leads to progressive muscle weakness, degeneration, and wasting; finally, follows with the premature demise in affected individuals due to respiratory and/or cardiac failure typically by age of 30. For decades, scientists tried massively to find an effective therapy method, but there is no absolute cure currently for patients with DMD, nevertheless, recent advanced progressions on the treatment of DMD will be hopeful in the future. Several promising gene therapies are currently under investigation. These include gene replacement, exon skipping, suppression of stop codons. More recently, a promising gene editing tool referred to as CRISPR/Cas9 offers exciting perspectives for restoring dystrophin expression in patients with DMD. This review intents to briefly describe these methods and comment on their advances. Since DMD is a genetic disorder, it should be treated by replacing the deficient DMD copy with a functional one. However, there are different types of mutations in this gene, so such therapeutic approaches are highly mutation specific and thus are personalized. Therefore, DMD has arisen as a model of genetic disorder for understanding and overcoming of the challenges of developing personalized genetic medicines, consequently, the lessons learned from these approaches will be applicable to many other disorders. CONCLUSIONS This review provides an update on the recent gene therapies for DMD that aim to compensate for dystrophin deficiency and the related clinical trials.
Collapse
Affiliation(s)
- Arash Salmaninejad
- a Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran.,b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Saeed Farajzadeh Valilou
- d Medical Genetics Network (MeGeNe) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Hadi Bayat
- e Department of Tissue Engineering, School of Advanced Technologies in Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Nader Ebadi
- f Department of Medical Genetics, Faculty of Medicine , Tehran University of Medical Science , Tehran , Iran
| | - Abdolreza Daraei
- g Genetic Department, Faculty of Medicine , Babol University of Medical Sciences , Babol , Iran
| | - Meysam Yousefi
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| | - Abolfazl Nesaei
- h Department of Basic Sciences, Faculty of Medicine , Gonabad University of Medical Sciences , Gonabad , Iran
| | - Majid Mojarrad
- b Student Research Committee, Department of Medical Genetics, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran.,c Medical Genetics Research Center, Faculty of Medicine , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
10
|
Moultrie RR, Lewis MA, Paquin RS, Lucas A, Jarecki J, Peay HL. An Evidence-Based, Community-Engaged Approach to Develop an Interactive Deliberation Tool for Pediatric Neuromuscular Trials. J Genet Couns 2017; 27:416-425. [PMID: 29260486 DOI: 10.1007/s10897-017-0190-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/28/2017] [Indexed: 01/09/2023]
Abstract
Duchenne/Becker muscular dystrophy (DBMD) and spinal muscular atrophy (SMA) are rare neuromuscular disorders that present challenges to therapeutic and clinical trial decision making. We developed an interactive, evidence-based online tool designed to encourage thoughtful deliberation of the pros and cons of trial participation and to inform meaningful discussions with healthcare providers. Prior research demonstrates the importance of tool availability at the time each family is considering trial participation, which may be prior to the informed consent process. The tool is intended to be easily modified to other pediatric disease communities. Tool development was informed by prior qualitative research, literature reviews, and stakeholder input. Specific items were derived based on an online exploratory questionnaire of parents whose children participated in a trial for DBMD or SMA to understand motivations for participation. Parent participants in the exploratory survey reported strong impact of altruistic and individual benefit motivations and placed much greater emphasis on anticipated trial benefits than on harms when making participation decisions. We used this data to develop the evidence-based deliberation tool using a community-engaged approach. We initially targeted the tool for DBMD while using SMA survey data to evaluate ease of transition to that population. We conducted two iterative sets of activities to inform development and refinement of the tool: (1) community engagement of key stakeholders and (2) user experience testing. These activities suggest that the tool may increase deliberation and the weighing of benefits and harms. Ongoing evaluation will determine the acceptability and efficacy of this online intervention.
Collapse
Affiliation(s)
- Rebecca R Moultrie
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA.
| | - Megan A Lewis
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Ryan S Paquin
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
| | - Ann Lucas
- Parent Project Muscular Dystrophy, Hackensack, NJ, USA
| | | | - Holly L Peay
- RTI International, 3040 E. Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC, 27709, USA
- Parent Project Muscular Dystrophy, Hackensack, NJ, USA
| |
Collapse
|
11
|
Walter MC, Reilich P. Recent developments in Duchenne muscular dystrophy: facts and numbers. J Cachexia Sarcopenia Muscle 2017; 8:681-685. [PMID: 29076660 PMCID: PMC5659056 DOI: 10.1002/jcsm.12245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/04/2017] [Indexed: 01/24/2023] Open
Affiliation(s)
- Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
12
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Yin YJ, Huang YP, Lu C, Sun XP, Niu FN, Jin R, Zhou GP. [A retrospective analysis of 6 children with Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:405-409. [PMID: 28407826 PMCID: PMC7389655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To analyze the clinical features of 6 children with Duchenne muscular dystrophy (DMD) and review related literature, and to provide a basis for early diagnosis and effective treatment of this disease. METHODS A retrospective analysis was performed on the clinical data of 6 children with DMD who were admitted to the First Affiliated Hospital of Nanjing Medical University from January 2010 to October 2015. RESULTS All the 6 cases were boys without a family history of DMD, and the age of diagnosis of DMD was 1.2-11.5 years. All patients had insidious onset and increases in alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase, creatine kinase (CK), and creatine kinase-MB, particularly CK, which was 3.3-107.2 times the normal level. Their gene detection results all showed DMD gene mutation. The gene detection results of two children's mothers showed that they carried the same mutant gene. The muscle biopsy in one case showed that the pathological changes confirmed the diagnosis of DMD. The level of CK in one case declined by 77.0% 5 days after umbilical cord blood mesenchymal stem cell transplantation. CONCLUSIONS For boys with abnormal serum enzyme levels and motor function, DMD should be highly suspected. It should be confirmed by CK and DMD gene detection as soon as possible. And the progression of the disease could be delayed by early intervention for protecting the remaining normal muscle fibers.
Collapse
Affiliation(s)
- Yu-Jie Yin
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yin YJ, Huang YP, Lu C, Sun XP, Niu FN, Jin R, Zhou GP. [A retrospective analysis of 6 children with Duchenne muscular dystrophy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:405-409. [PMID: 28407826 PMCID: PMC7389655 DOI: 10.7499/j.issn.1008-8830.2017.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/28/2016] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To analyze the clinical features of 6 children with Duchenne muscular dystrophy (DMD) and review related literature, and to provide a basis for early diagnosis and effective treatment of this disease. METHODS A retrospective analysis was performed on the clinical data of 6 children with DMD who were admitted to the First Affiliated Hospital of Nanjing Medical University from January 2010 to October 2015. RESULTS All the 6 cases were boys without a family history of DMD, and the age of diagnosis of DMD was 1.2-11.5 years. All patients had insidious onset and increases in alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, α-hydroxybutyrate dehydrogenase, creatine kinase (CK), and creatine kinase-MB, particularly CK, which was 3.3-107.2 times the normal level. Their gene detection results all showed DMD gene mutation. The gene detection results of two children's mothers showed that they carried the same mutant gene. The muscle biopsy in one case showed that the pathological changes confirmed the diagnosis of DMD. The level of CK in one case declined by 77.0% 5 days after umbilical cord blood mesenchymal stem cell transplantation. CONCLUSIONS For boys with abnormal serum enzyme levels and motor function, DMD should be highly suspected. It should be confirmed by CK and DMD gene detection as soon as possible. And the progression of the disease could be delayed by early intervention for protecting the remaining normal muscle fibers.
Collapse
Affiliation(s)
- Yu-Jie Yin
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | | | |
Collapse
|
15
|
Quantifying disease activity in fatty-infiltrated skeletal muscle by IDEAL-CPMG in Duchenne muscular dystrophy. Neuromuscul Disord 2016; 26:650-658. [PMID: 27593185 DOI: 10.1016/j.nmd.2016.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 05/27/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to explore the use of iterative decomposition of water and fat with echo asymmetry and least-squares estimation Carr-Purcell-Meiboom-Gill (IDEAL-CPMG) to simultaneously measure skeletal muscle apparent fat fraction and water T2 (T2,w) in patients with Duchenne muscular dystrophy (DMD). In twenty healthy volunteer boys and thirteen subjects with DMD, thigh muscle apparent fat fraction was measured by Dixon and IDEAL-CPMG, with the IDEAL-CPMG also providing T2,w as a measure of muscle inflammatory activity. A subset of subjects with DMD was followed up during a 48-week clinical study. The study was in compliance with the Patient Privacy Act and approved by the Institutional Review Board. Apparent fat fraction in the thigh muscles of subjects with DMD was significantly increased compared to healthy volunteer boys (p <0.001). There was a strong correlation between Dixon and IDEAL-CPMG apparent fat fraction. Muscle T2,w measured by IDEAL-CPMG was independent of changes in apparent fat fraction. Muscle T2,w was higher in the biceps femoris and vastus lateralis muscles of subjects with DMD (p <0.05). There was a strong correlation (p <0.004) between apparent fat fraction in all thigh muscles and six-minute walk distance (6MWD) in subjects with DMD. IDEAL-CPMG allowed independent and simultaneous quantification of skeletal muscle fatty degeneration and disease activity in DMD. IDEAL-CPMG apparent fat fraction and T2,w may be useful as biomarkers in clinical trials of DMD as the technique disentangles two competing biological processes.
Collapse
|
16
|
Cossu G, Previtali SC, Napolitano S, Cicalese MP, Tedesco FS, Nicastro F, Noviello M, Roostalu U, Natali Sora MG, Scarlato M, De Pellegrin M, Godi C, Giuliani S, Ciotti F, Tonlorenzi R, Lorenzetti I, Rivellini C, Benedetti S, Gatti R, Marktel S, Mazzi B, Tettamanti A, Ragazzi M, Imro MA, Marano G, Ambrosi A, Fiori R, Sormani MP, Bonini C, Venturini M, Politi LS, Torrente Y, Ciceri F. Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 2016; 7:1513-28. [PMID: 26543057 PMCID: PMC4693504 DOI: 10.15252/emmm.201505636] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intra‐arterial transplantation of mesoangioblasts proved safe and partially efficacious in preclinical models of muscular dystrophy. We now report the first‐in‐human, exploratory, non‐randomized open‐label phase I–IIa clinical trial of intra‐arterial HLA‐matched donor cell transplantation in 5 Duchenne patients. We administered escalating doses of donor‐derived mesoangioblasts in limb arteries under immunosuppressive therapy (tacrolimus). Four consecutive infusions were performed at 2‐month intervals, preceded and followed by clinical, laboratory, and muscular MRI analyses. Two months after the last infusion, a muscle biopsy was performed. Safety was the primary endpoint. The study was relatively safe: One patient developed a thalamic stroke with no clinical consequences and whose correlation with mesoangioblast infusion remained unclear. MRI documented the progression of the disease in 4/5 patients. Functional measures were transiently stabilized in 2/3 ambulant patients, but no functional improvements were observed. Low level of donor DNA was detected in muscle biopsies of 4/5 patients and donor‐derived dystrophin in 1. Intra‐arterial transplantation of donor mesoangioblasts in human proved to be feasible and relatively safe. Future implementation of the protocol, together with a younger age of patients, will be needed to approach efficacy.
Collapse
Affiliation(s)
- Giulio Cossu
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Stefano C Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Napolitano
- HSR/TIGET Pediatric Clinical Research Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy Hematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Cicalese
- HSR/TIGET Pediatric Clinical Research Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy Hematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Francesca Nicastro
- Laboratory of Analysis and Rehabilitation of Motor Function, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Urmas Roostalu
- Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | | | - Marina Scarlato
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Claudia Godi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy Neuroradiology Department and Neuroradiology Research Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Giuliani
- Hematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Ciotti
- Hematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rossana Tonlorenzi
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Isabella Lorenzetti
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Rivellini
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Benedetti
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Gatti
- Laboratory of Analysis and Rehabilitation of Motor Function, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Hematology and BMT Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Benedetta Mazzi
- Immunogenetics Laboratory, Department of Immunohematology & Blood Transfusion, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Tettamanti
- Laboratory of Analysis and Rehabilitation of Motor Function, Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Ragazzi
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | - Rossana Fiori
- Unit of Anesthesiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Venturini
- Department of Radiology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letterio S Politi
- Neuroradiology Department and Neuroradiology Research Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Ciceri
- HSR/TIGET Pediatric Clinical Research Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Gene therapy as a treatment for neuromuscular disease has significantly advanced over the past decade. In the present review, the progress of adeno-associated viruses (AAV) vector-mediated gene therapy for Duchenne muscular dystrophy (DMD) during the past year is highlighted. RECENT FINDINGS Modulating the immune response to AAV vector capsid or the transgene has helped to increase stable transduction efficiency. Full-length dystrophin expression via gene editing with targeted nucleases may ultimately be an ideal treatment option. Also genes with homologues function may ameliorate many aspects of the DMD pathophysiology. SUMMARY The work during the past year has increased our understanding of AAV vector-mediated therapy and has also validated new approaches to treat DMD. The results will aid in the design of both preclinical and clinical trials.
Collapse
|
18
|
Vainzof M, Feitosa L, Canovas M, Ayub-Guerrieri D, Pavanello RDCM, Zatz M. Concordant utrophin upregulation in phenotypically discordant DMD/BMD brothers. Neuromuscul Disord 2016; 26:197-200. [PMID: 26851826 DOI: 10.1016/j.nmd.2016.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 01/03/2016] [Accepted: 01/15/2016] [Indexed: 11/17/2022]
Abstract
Utrophin expression was investigated in two phenotypically discordant Duchenne muscular dystrophy half-brothers. The youngest was wheelchair-bound at age 9, while his mildly affected older brother was able to walk without difficulties at age 15. DNA analysis revealed an out-of-frame exon 2 duplication in the DMD gene, associated with muscle dystrophin protein deficiency. Utrophin localization and quantity was analyzed and compared in both sibs to verify whether this could explain the milder phenotype of the older brother. Immunofluorescence analysis showed a clear sarcolemmal labeling for utrophin in both of them, which was present in regenerating as well as in mature fibers. On western blot analysis, utrophin amount was increased 3.4 and 3.3 fold respectively, as compared to normal controls, while it was increased 1.7 to 4.0 fold in a group of DMD patients within the typical range of clinical progression. These data are in accordance with our previous observations suggesting no correlation between phenotype severity and utrophin up-regulation or sarcolemmal localization in dystrophinopathies. Finding the protective mechanisms in patients with milder course is of utmost interest to direct therapeutic targets.
Collapse
Affiliation(s)
- Mariz Vainzof
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil.
| | - Leticia Feitosa
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Marta Canovas
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Danielle Ayub-Guerrieri
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Rita de Cássia M Pavanello
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem-Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, Nair N, Samara-Kuko E, Athanasopoulos T, Tedesco FS, Dickson G, Sampaolesi M, VandenDriessche T, Chuah MK. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res 2015; 44:744-60. [PMID: 26682797 PMCID: PMC4737162 DOI: 10.1093/nar/gkv1464] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/28/2015] [Indexed: 01/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.
Collapse
Affiliation(s)
- Mariana Loperfido
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Susan Jarmin
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium
| | - Mario Di Matteo
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Ilaria Perini
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Marc Moore
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium
| | - Takis Athanasopoulos
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK Faculty of Science & Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, UK
| | | | - George Dickson
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Department of Development and Regeneration, University of Leuven, Leuven 3000, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, Brussels 1090, Belgium Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
20
|
Nance ME, Duan D. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy. Hum Gene Ther 2015; 26:786-800. [PMID: 26414293 PMCID: PMC4692109 DOI: 10.1089/hum.2015.107] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/01/2015] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.
Collapse
MESH Headings
- Animals
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Dependovirus/genetics
- Dependovirus/metabolism
- Dystrophin/deficiency
- Dystrophin/genetics
- Gene Expression
- Genetic Therapy/methods
- Genetic Vectors/chemistry
- Genetic Vectors/metabolism
- Humans
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/metabolism
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Animal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- Protein Engineering
- Species Specificity
Collapse
Affiliation(s)
- Michael E. Nance
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
21
|
Falzarano MS, Scotton C, Passarelli C, Ferlini A. Duchenne Muscular Dystrophy: From Diagnosis to Therapy. Molecules 2015; 20:18168-84. [PMID: 26457695 PMCID: PMC6332113 DOI: 10.3390/molecules201018168] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked inherited neuromuscular disorder due to mutations in the dystrophin gene. It is characterized by progressive muscle weakness and wasting due to the absence of dystrophin protein that causes degeneration of skeletal and cardiac muscle. The molecular diagnostic of DMD involves a deletions/duplications analysis performed by quantitative technique such as microarray-based comparative genomic hybridization (array-CGH), Multiple Ligation Probe Assay MLPA. Since traditional methods for detection of point mutations and other sequence variants require high cost and are time consuming, especially for a large gene like dystrophin, the use of next-generation sequencing (NGS) has become a useful tool available for clinical diagnosis. The dystrophin gene is large and finely regulated in terms of tissue expression, and RNA processing and editing includes a variety of fine tuned processes. At present, there are no effective treatments and the steroids are the only fully approved drugs used in DMD therapy able to slow disease progression. In the last years, an increasing variety of strategies have been studied as a possible therapeutic approach aimed to restore dystrophin production and to preserve muscle mass, ameliorating the DMD phenotype. RNA is the most studied target for the development of clinical strategies and Antisense Oligonucleotides (AONs) are the most used molecules for RNA modulation. The identification of delivery system to enhance the efficacy and to reduce the toxicity of AON is the main purpose in this area and nanomaterials are a very promising model as DNA/RNA molecules vectors. Dystrophinopathies therefore represent a pivotal field of investigation, which has opened novel avenues in molecular biology, medical genetics and novel therapeutic options.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| | | | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, 44121 Italy.
| |
Collapse
|
22
|
Holland A, Murphy S, Dowling P, Ohlendieck K. Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 2015; 16:345-66. [PMID: 26256116 DOI: 10.1002/pmic.201500158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022]
Abstract
The gradual accumulation of collagen and associated proteins of the extracellular matrix is a crucial myopathological parameter of many neuromuscular disorders. Progressive tissue damage and fibrosis play a key pathobiochemical role in the dysregulation of contractile functions and often correlates with poor motor outcome in muscular dystrophies. Following a brief introduction into the role of the extracellular matrix in skeletal muscles, we review here the proteomic profiling of myofibrosis and its intrinsic role in X-linked muscular dystrophy. Although Duchenne muscular dystrophy is primarily a disease of the membrane cytoskeleton, one of its most striking histopathological features is a hyperactive connective tissue and tissue scarring. We outline the identification of novel factors involved in the modulation of the extracellular matrix in muscular dystrophy, such as matricellular proteins. The establishment of novel proteomic markers will be helpful in improving the diagnosis, prognosis, and therapy monitoring in relation to fibrotic substitution of contractile tissue. In the future, the prevention of fibrosis will be crucial for providing optimum conditions to apply novel pharmacological treatments, as well as establish cell-based approaches or gene therapeutic interventions. The elimination of secondary abnormalities in the matrisome promises to reduce tissue scarring and the loss of skeletal muscle elasticity.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
23
|
Agarwala A, Jones P, Nambi V. The role of antisense oligonucleotide therapy in patients with familial hypercholesterolemia: risks, benefits, and management recommendations. Curr Atheroscler Rep 2015; 17:467. [PMID: 25398643 DOI: 10.1007/s11883-014-0467-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antisense oligonucleotide therapy is a promising approach for the treatment of a broad variety of medical conditions. It functions at the cellular level by interfering with RNA function, often leading to degradation of specifically targeted abnormal gene products implicated in the disease process. Mipomersen is a novel antisense oligonucleotide directed at apolipoprotein (apoB)-100, the primary apolipoprotein associated with low-density lipoprotein cholesterol (LDL-C), which has recently been approved for the treatment of familial hypercholesterolemia. A number of clinical studies have demonstrated its efficacy in lowering LDL-C and apoB levels in patients with elevated LDL-C despite maximal medical therapy using conventional lipid-lowering agents. This review outlines the risks and benefits of therapy and provides recommendations on the use of mipomersen.
Collapse
Affiliation(s)
- Anandita Agarwala
- Department of Medicine, Baylor College of Medicine, Michael E. DeBakey Veterans Affairs Medical Center, One Baylor Plaza, Houston, TX, 77030, USA,
| | | | | |
Collapse
|
24
|
Martinez L, Ermolova NV, Ishikawa TO, Stout DB, Herschman HR, Spencer MJ. A reporter mouse for optical imaging of inflammation in mdx muscles. Skelet Muscle 2015; 5:15. [PMID: 25949789 PMCID: PMC4422315 DOI: 10.1186/s13395-015-0042-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/17/2015] [Indexed: 01/08/2023] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is due to mutations in the gene coding for human DMD; DMD is characterized by progressive muscle degeneration, inflammation, fat accumulation, and fibrosis. The mdx mouse model of DMD lacks dystrophin protein and undergoes a predictable disease course. While this model has been a valuable resource for pre-clinical studies aiming to test therapeutic compounds, its utility is compromised by a lack of reliable biochemical tools to quantifiably assay muscle disease. Additionally, there are few non-invasive assays available to researchers for measuring early indicators of disease progression in mdx mice. Methods Mdx mice were crossed to knock-in mice expressing luciferase from the Cox2 promoter. These reporter mice (Cox2FLuc/+DMD−/−) were created to serve as a tool for researchers to evaluate muscle inflammation. Luciferase expression was assayed by immunohistochemistry to insure that it correlated with muscle lesions. The luciferase signal was quantified by optical imaging and luciferase assays to verify that the signal correlated with muscle damage. As proof of principle, Cox2FLuc/+DMD−/− mice were also treated with prednisolone to validate that a reduction in luciferase signal correlated with prednisone treatment. Results In this investigation, a novel reporter mouse (Cox2FLuc/+DMD−/− mice) was created and validated for non-invasive quantification of muscle inflammation in vivo. In this dystrophic mouse, luciferase is expressed from cyclooxygenase 2 (Cox2) expressing cells and bioluminescence is detected by optical imaging. Bioluminescence is significantly enhanced in damaged muscle of exercised Cox2FLuc/+DMD−/− mice compared to non-exercised Cox2FLuc/+DMD+/+ mice. Moreover, the Cox2 bioluminescent signal is reduced in Cox2FLuc/+DMD−/− mice in response to a course of steroid treatment. Reduction in bioluminescence is detectable prior to measurable therapy-elicited improvements in muscle strength, as assessed by traditional means. Biochemical assay of luciferase provides a second means to quantify muscle inflammation. Conclusions The Cox2FLuc/+DMD−/− mouse is a novel tool to evaluate the therapeutic benefits of drugs intended to target inflammatory aspects of dystrophic pathology. This mouse model will be a useful adjunct to traditional outcome measures in assessing potential therapeutic compounds.
Collapse
Affiliation(s)
- Leonel Martinez
- Department of Neurology and Center for Duchenne Muscular Dystrophy, David Geffen School of Medicine, University of California Los Angeles, 635 Charles Young Dr. South, NRB Room 401, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA 90095 USA
| | - Natalia V Ermolova
- Department of Neurology and Center for Duchenne Muscular Dystrophy, David Geffen School of Medicine, University of California Los Angeles, 635 Charles Young Dr. South, NRB Room 401, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA 90095 USA
| | - Tomo-O Ishikawa
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, 341 Boyer Hall, 611 Charles E Young Dr. So, Los Angeles, CA 90095 USA ; Present address: Genomics Business Department, Trans Genic Inc, Kumamoto, 862-0976 Japan
| | - David B Stout
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Harvey R Herschman
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, 341 Boyer Hall, 611 Charles E Young Dr. So, Los Angeles, CA 90095 USA ; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA ; Molecular Biology Institute, UCLA, Los Angeles, CA 90095 USA
| | - Melissa J Spencer
- Department of Neurology and Center for Duchenne Muscular Dystrophy, David Geffen School of Medicine, University of California Los Angeles, 635 Charles Young Dr. South, NRB Room 401, Los Angeles, CA 90095 USA ; Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA 90095 USA ; Molecular Biology Institute, UCLA, Los Angeles, CA 90095 USA
| |
Collapse
|
25
|
Comparison of mutation profiles in the Duchenne muscular dystrophy gene among populations: implications for potential molecular therapies. Int J Mol Sci 2015; 16:5334-46. [PMID: 25761239 PMCID: PMC4394478 DOI: 10.3390/ijms16035334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/27/2015] [Indexed: 11/16/2022] Open
Abstract
Novel therapeutic approaches are emerging to restore dystrophin function in Duchenne Muscular Dystrophy (DMD), a severe neuromuscular disease characterized by progressive muscle wasting and weakness. Some of the molecular therapies, such as exon skipping, stop codon read-through and internal ribosome entry site-mediated translation rely on the type and location of mutations. Hence, their potential applicability worldwide depends on mutation frequencies within populations. In view of this, we compared the mutation profiles of the populations represented in the DMD Leiden Open-source Variation Database with original data from Mexican patients (n = 162) with clinical diagnosis of the disease. Our data confirm that applicability of exon 51 is high in most populations, but also show that differences in theoretical applicability of exon skipping may exist among populations; Mexico has the highest frequency of potential candidates for the skipping of exons 44 and 46, which is different from other populations (p < 0.001). To our knowledge, this is the first comprehensive comparison of theoretical applicability of exon skipping targets among specific populations.
Collapse
|
26
|
Gutpell KM, Hrinivich WT, Hoffman LM. Skeletal muscle fibrosis in the mdx/utrn+/- mouse validates its suitability as a murine model of Duchenne muscular dystrophy. PLoS One 2015; 10:e0117306. [PMID: 25607927 PMCID: PMC4301874 DOI: 10.1371/journal.pone.0117306] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 12/22/2014] [Indexed: 12/31/2022] Open
Abstract
Various therapeutic approaches have been studied for the treatment of Duchenne muscular dystrophy (DMD), but none of these approaches have led to significant long-term effects in patients. One reason for this observed inefficacy may be the use of inappropriate animal models for the testing of therapeutic agents. The mdx mouse is the most widely used murine model of DMD, yet it does not model the fibrotic progression observed in patients. Other murine models of DMD are available that lack one or both alleles of utrophin, a functional analog of dystrophin. The aim of this study was to compare fibrosis and myofiber damage in the mdx, mdx/utrn+/- and double knockout (dko) mouse models. We used Masson’s trichrome stain and percentage of centrally-nucleated myofibers as indicators of fibrosis and myofiber regeneration, respectively, to assess disease progression in diaphragm and gastrocnemius muscles harvested from young and aged wild-type, mdx, mdx/utrn+/- and dko mice. Our results indicated that eight week-old gastrocnemius muscles of both mdx/utrn+/- and dko hind limb developed fibrosis whereas age-matched mdx gastrocnemius muscle did not (p = 0.002). The amount of collagen found in the mdx/utrn+/- diaphragm was significantly higher than that found in the corresponding diaphragm muscles of wild-type animals, but not of mdx animals (p = 0.0003). Aged mdx/utrn+/- mice developed fibrosis in both diaphragm and gastrocnemius muscles compared to wild-type controls (p = 0.003). Mdx diaphragm was fibrotic in aged mice as well (p = 0.0235), whereas the gastrocnemius muscle in these animals was not fibrotic. We did not measure a significant difference in collagen staining between wild-type and mdx gastrocnemius muscles. The results of this study support previous reports that the moderately-affected mdx/utrn+/- mouse is a better model of DMD, and we show here that this difference is apparent by 2 months of age.
Collapse
Affiliation(s)
- Kelly M. Gutpell
- Imaging Program, Lawson Health Research Institute, Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- * E-mail:
| | | | - Lisa M. Hoffman
- Imaging Program, Lawson Health Research Institute, Department of Anatomy and Cell Biology, Western University, Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|