1
|
Shapoval O, Engstová H, Jirák D, Drahokoupil J, Sulková K, Berková Z, Pop-Georgievski O, Holendová B, Ježek P, Horák D. Poly(4-Styrenesulfonic Acid- co-maleic Anhydride)-Coated NaGdF 4:Yb,Tb,Nd Nanoparticles with Luminescence and Magnetic Properties for Imaging of Pancreatic Islets and β-Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18233-18247. [PMID: 35416039 DOI: 10.1021/acsami.2c04274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Novel Yb,Tb,Nd-doped GdF3 and NaGdF4 nanoparticles were synthesized by a coprecipitation method in ethylene glycol (EG) in the presence of the poly(4-styrenesulfonic acid-co-maleic anhydride) stabilizer. The particle size and morphology, crystal structure, and phase change were controlled by adjusting the PSSMA concentration and source of fluoride anions in the reaction. Doping of Yb3+, Tb3+, and Nd3+ ions in the NaGdF4 host nanoparticles induced luminescence under ultraviolet and near-infrared excitation and high relaxivity in magnetic resonance (MR) imaging (MRI). In vitro toxicity of the nanoparticles and their cellular uptake efficiency were determined in model rat pancreatic β-cells (INS-1E). As the NaGdF4:Yb,Tb,Nd@PSSMA-EG nanoparticles were non-toxic and possessed good luminescence and magnetic properties, they were applicable for in vitro optical and MRI of isolated pancreatic islets in phantoms. The superior contrast was achieved for in vivo T2*-weighted MR images of the islets transplanted under the kidney capsule to mice in preclinical trials.
Collapse
Affiliation(s)
- Oleksandr Shapoval
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Hana Engstová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Daniel Jirák
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
- Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University, Salmovská 1, Prague 2 120 00, Czech Republic
| | - Jan Drahokoupil
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 8 182 21, Czech Republic
| | - Kateřina Sulková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
| | - Zuzana Berková
- Institute for Clinical and Experimental Medicine, Vídeňská 1958/9, Prague 4 142 21, Czech Republic
| | - Ognen Pop-Georgievski
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| | - Blanka Holendová
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Petr Ježek
- Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4 142 20, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 06, Czech Republic
| |
Collapse
|
2
|
Wang P, Yoo B, Yang J, Zhang X, Ross A, Pantazopoulos P, Dai G, Moore A. GLP-1R-targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes 2014; 63:1465-74. [PMID: 24458362 PMCID: PMC4178324 DOI: 10.2337/db13-1543] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 01/19/2014] [Indexed: 12/19/2022]
Abstract
Noninvasive assessment of pancreatic β-cell mass would tremendously aid in managing type 1 diabetes (T1D). Toward this goal, we synthesized an exendin-4 conjugated magnetic iron oxide-based nanoparticle probe targeting glucagon-like peptide 1 receptor (GLP-1R), which is highly expressed on the surface of pancreatic β-cells. In vitro studies in βTC-6, the β-cell line, showed specific accumulation of the targeted probe (termed MN-Ex10-Cy5.5) compared with nontargeted (termed MN-Cy5.5). In vivo magnetic resonance imaging showed a significant transverse relaxation time (T2) shortening in the pancreata of mice injected with the MN-Ex10-Cy5.5 probe compared with control animals injected with the nontargeted probe at 7.5 and 24 h after injection. Furthermore, ΔT2 of the pancreata of prediabetic NOD mice was significantly higher than that of diabetic NOD mice after the injection of MN-Ex10-Cy5.5, indicating the decrease of probe accumulation in these animals due to β-cell loss. Of note, ΔT2 of prediabetic and diabetic NOD mice injected with MN-Cy5.5 was not significantly changed, reflecting the nonspecific mode of accumulation of nontargeted probe. We believe our results point to the potential for using this agent for monitoring the disease development and response of T1D to therapy.
Collapse
Affiliation(s)
- Ping Wang
- Molecular Imaging Laboratory, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Byunghee Yoo
- Molecular Imaging Laboratory, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jingsheng Yang
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Xueli Zhang
- Molecular Imaging Laboratory, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Center for Drug Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Alana Ross
- Molecular Imaging Laboratory, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Pamela Pantazopoulos
- Molecular Imaging Laboratory, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Guangping Dai
- Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anna Moore
- Molecular Imaging Laboratory, Massachusetts General Hospital/Massachusetts Institute of Technology/Harvard Medical School Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|