1
|
Sun Y, Kong J, Ge X, Mao M, Yu H, Wang Y. An Antisense Oligonucleotide-Loaded Blood-Brain Barrier Penetrable Nanoparticle Mediating Recruitment of Endogenous Neural Stem Cells for the Treatment of Parkinson's Disease. ACS NANO 2023; 17:4414-4432. [PMID: 36688425 DOI: 10.1021/acsnano.2c09752] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the death of dopaminergic (DA) neurons and currently cannot be cured. One selected antisense oligonucleotide (ASO) is reported to be effective for the treatment of PD. However, ASO is usually intrathecally administered by lumbar puncture into the cerebral spinal fluid, through which the risks of highly invasive neurosurgery are the major concerns. In this study, ZAAM, an ASO-loaded, aptamer Apt 19S-conjugated, neural stem cell membrane (NSCM)-coated nanoparticle (NP), was developed for the targeted treatment of PD. NSCM facilitated the blood-brain barrier (BBB) penetration of NPs, and both NSCM and Apt 19S promoted the recruitment of the neural stem cells (NSCs) toward the PD site for DA neuron regeneration. The behavioral tests demonstrated that ZAAM highly improved the efficacy of ASO on PD by the targeted delivery of ASO and the recruitment of NSCs. This work is a heuristic report of (1) nonchemoattractant induced endogenous NSC recruitment, (2) NSCM-coated nanoparticles for the treatment of neurodegenerative diseases, and (3) systemic delivery of ASO for the treatment of PD. These findings provide insights into the development of biomimetic BBB penetrable drug carriers for precise diagnosis and therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou310058, P.R. China
- Ningbo Research Institute, Zhejiang University, Ningbo315100, P.R. China
| |
Collapse
|
2
|
Mercer-Smith AR, Findlay IA, Bomba HN, Hingtgen SD. Intravenously Infused Stem Cells for Cancer Treatment. Stem Cell Rev Rep 2021; 17:2025-2041. [PMID: 34138421 DOI: 10.1007/s12015-021-10192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/14/2023]
Abstract
Despite the recent influx of immunotherapies and small molecule drugs to treat tumors, cancer remains a leading cause of death in the United States, in large part due to the difficulties of treating metastatic cancer. Stem cells, which are inherently tumoritropic, provide a useful drug delivery vehicle to target both primary and metastatic tumors. Intravenous infusions of stem cells carrying or secreting therapeutic payloads show significant promise in the treatment of cancer. Stem cells may be engineered to secrete cytotoxic products, loaded with oncolytic viruses or nanoparticles containing small molecule drugs, or conjugated with immunotherapies. Herein we describe these preclinical and clinical studies, discuss the distribution and migration of stem cells following intravenous infusion, and examine both the limitations of and the methods to improve the migration and therapeutic efficacy of tumoritropic, therapeutic stem cells.
Collapse
Affiliation(s)
- Alison R Mercer-Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Ingrid A Findlay
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Hunter N Bomba
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA. .,Department of Neurosurgery, The University of North Carolina at Chapel Hill, North Carolina, Chapel Hill, 27599, USA.
| |
Collapse
|
3
|
Calinescu AA, Kauss MC, Sultan Z, Al-Holou WN, O'Shea SK. Stem cells for the treatment of glioblastoma: a 20-year perspective. CNS Oncol 2021; 10:CNS73. [PMID: 34006134 PMCID: PMC8162173 DOI: 10.2217/cns-2020-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma, the deadliest form of primary brain tumor, remains a disease without cure. Treatment resistance is in large part attributed to limitations in the delivery and distribution of therapeutic agents. Over the last 20 years, numerous preclinical studies have demonstrated the feasibility and efficacy of stem cells as antiglioma agents, leading to the development of trials to test these therapies in the clinic. In this review we present and analyze these studies, discuss mechanisms underlying their beneficial effect and highlight experimental progress, limitations and the emergence of promising new therapeutic avenues. We hope to increase awareness of the advantages brought by stem cells for the treatment of glioblastoma and inspire further studies that will lead to accelerated implementation of effective therapies. Glioblastoma is the deadliest and most common form of brain tumor, for which there is no cure. It is very difficult to deliver medicine to the tumor cells, because they spread out widely into the normal brain, and local blood vessels represent a barrier that most medicines cannot cross. It was shown, in many studies over the last 20 years, that stem cells are attracted toward the tumor and that they can deliver many kinds of therapeutic agents directly to brain cancer cells and shrink the tumor. In this review we analyze these studies and present new discoveries that can be used to make stem cell therapies for glioblastoma more effective to prolong the life of patients with brain tumors.
Collapse
Affiliation(s)
| | - McKenzie C Kauss
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Literature Science & Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zain Sultan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,College of Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sue K O'Shea
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Carey-Ewend AG, Hagler SB, Bomba HN, Goetz MJ, Bago JR, Hingtgen SD. Developing Bioinspired Three-Dimensional Models of Brain Cancer to Evaluate Tumor-Homing Neural Stem Cell Therapy. Tissue Eng Part A 2020; 27:857-866. [PMID: 33085922 DOI: 10.1089/ten.tea.2020.0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Engineered neural stem cells (NSCs) have recently emerged as a promising therapy. Acting as a tumor-homing drug-delivery system, NSCs migrate through brain tissue to seek out primary and invasive tumor foci. NSCs can deliver therapeutic agents, such as TNFα-related apoptosis-inducing ligand, directly to the tumor and suppress glioblastoma (GBM) in murine models. While the mainstays for evaluating NSC migration and efficacy have been two-dimensional chemotaxis assays and mouse models, these low-throughput and small-scale systems limit our ability to implant and track these cells for human translation. To circumvent these challenges, we developed a three-dimensional culture system using a matrix of poly-l-lactic acid 6100 microfibers suspended in agar. These bioinspired brain matrices were used to model tumor growth, NSC migration, and efficacy of NSC therapy at small and human scale. Kinetic fluorescent imaging confirmed growth of tumors in both small and human-sized bioinspired brain matrix. Tumors proliferated 50-fold and 3-fold for GBM and human metastatic breast cancer, respectively, over 7 days. We next explored the impact of tumor location on NSC migration. When NSCs were implanted 2 mm lateral from the tumor foci, NSCs colocalized with the GBM within 7 days. In models of multifocal disease, NSCs were found to colocalize with multiple tumors, preferentially migrating to tumor foci closest to the site of NSC implantation. Lastly, therapeutic NSCs were implanted at increasing distances (0, 2, 5, or 10 mm) laterally from GBM foci to investigate the effects of distance on NSC efficacy. Serial imaging showed reduced fluorescence at tumor sites, implicating GBM apoptosis across all distances. NSCs coinjected with tumor induced a near-complete response in <10 days, while NSCs implanted 10 mm laterally from the tumor induced a near-complete response by day 30. Lastly, GBM foci were established in each hemisphere of the model and control or therapeutic NSCs were implanted adjacent to tumor cells in the right hemisphere. Kinetic imaging showed that NSC therapy attenuated progression of GBM foci, while GBM cells treated with control NSC expanded rapidly over 21 days. In conclusion, we developed a new bioinspired model that supports growth of human brain cancer cells and enables rapid tracking of NSC therapy. Impact statement Tumor-homing and tumor-killing-engineered neural stem cell (NSC) therapies have shown immense promise in both preclinical and clinical trials. However, as cell therapies continue to evolve, cost-effective and high-throughput screening assays are needed to assess the proliferation, migration, and efficacy of these cells. In this study, we developed a bioinspired brain matrix for the evaluation of engineered NSCs. Importantly, this matrix is easy to fabricate, scalable, and allows for sterile real-time, noninvasive imaging using our custom bioreactor. We then utilized the bioinspired brain matrix system to answer key questions around the tumor-homing migration and efficacy of engineered NSC therapies that are challenging to address with traditional models.
Collapse
Affiliation(s)
- Abigail G Carey-Ewend
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shaye B Hagler
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hunter N Bomba
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan J Goetz
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Juli R Bago
- Department of Hemato-Oncology, University Hospital of Ostrava, Ostrava, Czech Republic
| | - Shawn D Hingtgen
- Department of Pharmaceutical Sciences, Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Generation and Profiling of Tumor-Homing Induced Neural Stem Cells from the Skin of Cancer Patients. Mol Ther 2020; 28:1614-1627. [PMID: 32402245 DOI: 10.1016/j.ymthe.2020.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/13/2020] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
The conversion of human fibroblasts into personalized induced neural stem cells (iNSCs) that actively seek out tumors and deliver cytotoxic agents is a highly promising approach for treating various types of cancer. However, the ability to generate iNSCs from the skin of cancer patients has not been explored. Here, we take an important step toward clinical application by generating iNSCs from skin biopsies of human patients undergoing treatment for the aggressive brain cancer, glioblastoma (GBM). We then utilized a panel of functional and genomic studies to investigate the efficacy and tumor-homing capacity of these patient-derived cells, as well as genomic analysis, to characterize the impact of interpatient variability on this personalized cell therapy. From the skin-tissue biopsies, we established fibroblasts and transdifferentiated the cells into iNSCs. Genomic and functional testing revealed marked variability in growth rates, therapeutic agent production, and gene expression during fibroblast-to-iNSC conversion among patient lines. In vivo testing showed patient-derived iNSCs home to tumors, yet rates and expression of homing-related pathways varied among patients. With the use of surgical-resection mouse models of invasive human cluster of differentiation 133+ (CD133+) GBM cells and serial kinetic imaging, we found that "high-performing" patient-derived iNSC lines reduced the volume of GBM cells 60-fold and extended survival from 28 to 45 days. Treatment with "low-performing" patient lines had minimal effect on tumor growth, but the anti-tumor effect could be rescued by increasing the intracavity dose. Together, these data show, for the first time, that tumor-homing iNSCs can be generated from the skin of cancer patients and efficaciously suppress tumor growth. We also begin to define genetic markers that could be used to identify cells that will contain the most effective attributes for tumor homing and kill in human patients, including high gene expression of the semaphorin-3B (SEMA3B), which is known to be involved in neuronal cell migration. These studies should serve as an important guide toward clinical GBM therapy, where the personalized nature of optimized iNSC therapy has the potential to avoid transplant rejection and maximize treatment durability.
Collapse
|