1
|
Sheth KN, Yuen MM, Mazurek MH, Cahn BA, Prabhat AM, Salehi S, Shah JT, By S, Welch EB, Sofka M, Sacolick LI, Kim JA, Payabvash S, Falcone GJ, Gilmore EJ, Hwang DY, Matouk C, Gordon-Kundu B, Rn AW, Petersen N, Schindler J, Gobeske KT, Sansing LH, Sze G, Rosen MS, Kimberly WT, Kundu P. Bedside detection of intracranial midline shift using portable magnetic resonance imaging. Sci Rep 2022; 12:67. [PMID: 34996970 PMCID: PMC8742125 DOI: 10.1038/s41598-021-03892-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroimaging is crucial for assessing mass effect in brain-injured patients. Transport to an imaging suite, however, is challenging for critically ill patients. We evaluated the use of a low magnetic field, portable MRI (pMRI) for assessing midline shift (MLS). In this observational study, 0.064 T pMRI exams were performed on stroke patients admitted to the neuroscience intensive care unit at Yale New Haven Hospital. Dichotomous (present or absent) and continuous MLS measurements were obtained on pMRI exams and locally available and accessible standard-of-care imaging exams (CT or MRI). We evaluated the agreement between pMRI and standard-of-care measurements. Additionally, we assessed the relationship between pMRI-based MLS and functional outcome (modified Rankin Scale). A total of 102 patients were included in the final study (48 ischemic stroke; 54 intracranial hemorrhage). There was significant concordance between pMRI and standard-of-care measurements (dichotomous, κ = 0.87; continuous, ICC = 0.94). Low-field pMRI identified MLS with a sensitivity of 0.93 and specificity of 0.96. Moreover, pMRI MLS assessments predicted poor clinical outcome at discharge (dichotomous: adjusted OR 7.98, 95% CI 2.07–40.04, p = 0.005; continuous: adjusted OR 1.59, 95% CI 1.11–2.49, p = 0.021). Low-field pMRI may serve as a valuable bedside tool for detecting mass effect.
Collapse
Affiliation(s)
- Kevin N Sheth
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA.
| | - Matthew M Yuen
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Mercy H Mazurek
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Bradley A Cahn
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Anjali M Prabhat
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | | | - Jill T Shah
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | | | | | | | | | - Jennifer A Kim
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | | | - Guido J Falcone
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Emily J Gilmore
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - David Y Hwang
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Charles Matouk
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Barbara Gordon-Kundu
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Adrienne Ward Rn
- Neuroscience Intensive Care Unit, Yale New Haven Hospital, New Haven, CT, USA
| | - Nils Petersen
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Joseph Schindler
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Lauren H Sansing
- Department of Neurology, Yale School of Medicine, 15 York Street, LLCI Room 1003C, P.O. Box 208018, New Haven, CT, 06520, USA
| | - Gordon Sze
- Department of Neuroradiology, Yale School of Medicine, New Haven, CT, USA
| | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
2
|
H. Buck B, Akhtar N, Alrohimi A, Khan K, Shuaib A. Stroke mimics: incidence, aetiology, clinical features and treatment. Ann Med 2021; 53:420-436. [PMID: 33678099 PMCID: PMC7939567 DOI: 10.1080/07853890.2021.1890205] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Mimics account for almost half of hospital admissions for suspected stroke. Stroke mimics may present as a functional (conversion) disorder or may be part of the symptomatology of a neurological or medical disorder. While many underlying conditions can be recognized rapidly by careful assessment, a significant proportion of patients unfortunately still receive thrombolysis and admission to a high-intensity stroke unit with inherent risks and unnecessary costs. Accurate diagnosis is important as recurrent presentations may be common in many disorders. A non-contrast CT is not sufficient to make a diagnosis of acute stroke as the test may be normal very early following an acute stroke. Multi-modal CT or magnetic resonance imaging (MRI) may be helpful to confirm an acute ischaemic stroke and are necessary if stroke mimics are suspected. Treatment in neurological and medical mimics results in prompt resolution of the symptoms. Treatment of functional disorders can be challenging and is often incomplete and requires early psychiatric intervention.
Collapse
Affiliation(s)
- Brian H. Buck
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| | - Naveed Akhtar
- Neurological Institute, Hamad Medical Corporation, Doha, Qatar
| | - Anas Alrohimi
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
- Department of Medicine (Neurology), King Saud University, Riyadh, Saudi Arabia
| | - Khurshid Khan
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| | - Ashfaq Shuaib
- Department of Medicine (Neurology), University of Alberta, Edmonton, Canada
| |
Collapse
|