1
|
Kajdasz A, Majer W, Kluzek K, Sobkowiak J, Milecki T, Derebecka N, Kwias Z, Bluyssen HAR, Wesoly J. Identification of RCC Subtype-Specific microRNAs-Meta-Analysis of High-Throughput RCC Tumor microRNA Expression Data. Cancers (Basel) 2021; 13:548. [PMID: 33535553 PMCID: PMC7867039 DOI: 10.3390/cancers13030548] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/17/2022] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common cancers worldwide with a nearly non-symptomatic course until the advanced stages of the disease. RCC can be distinguished into three subtypes: papillary (pRCC), chromophobe (chRCC) and clear cell renal cell carcinoma (ccRCC) representing up to 75% of all RCC cases. Detection and RCC monitoring tools are limited to standard imaging techniques, in combination with non-RCC specific morphological and biochemical read-outs. RCC subtype identification relays mainly on results of pathological examination of tumor slides. Molecular, clinically applicable and ideally non-invasive tools aiding RCC management are still non-existent, although molecular characterization of RCC is relatively advanced. Hence, many research efforts concentrate on the identification of molecular markers that will assist with RCC sub-classification and monitoring. Due to stability and tissue-specificity miRNAs are promising candidates for such biomarkers. Here, we performed a meta-analysis study, utilized seven NGS and seven microarray RCC studies in order to identify subtype-specific expression of miRNAs. We concentrated on potentially oncocytoma-specific miRNAs (miRNA-424-5p, miRNA-146b-5p, miRNA-183-5p, miRNA-218-5p), pRCC-specific (miRNA-127-3p, miRNA-139-5p) and ccRCC-specific miRNAs (miRNA-200c-3p, miRNA-362-5p, miRNA-363-3p and miRNA-204-5p, 21-5p, miRNA-224-5p, miRNA-155-5p, miRNA-210-3p) and validated their expression in an independent sample set. Additionally, we found ccRCC-specific miRNAs to be differentially expressed in ccRCC tumor according to Fuhrman grades and identified alterations in their isoform composition in tumor tissue. Our results revealed that changes in the expression of selected miRNA might be potentially utilized as a tool aiding ccRCC subclass discrimination and we propose a miRNA panel aiding RCC subtype distinction.
Collapse
Affiliation(s)
- Arkadiusz Kajdasz
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (K.K.); (H.A.R.B.)
| | - Weronika Majer
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (W.M.); (N.D.)
| | - Katarzyna Kluzek
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (K.K.); (H.A.R.B.)
| | - Jacek Sobkowiak
- Department of Urology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; (J.S.); (T.M.); (Z.K.)
| | - Tomasz Milecki
- Department of Urology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; (J.S.); (T.M.); (Z.K.)
| | - Natalia Derebecka
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (W.M.); (N.D.)
| | - Zbigniew Kwias
- Department of Urology, Poznan University of Medical Sciences, Szwajcarska 3, 61-285 Poznan, Poland; (J.S.); (T.M.); (Z.K.)
| | - Hans A. R. Bluyssen
- Laboratory of Human Molecular Genetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (K.K.); (H.A.R.B.)
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland; (W.M.); (N.D.)
| |
Collapse
|
2
|
He L, Liao L, Du L. miR‑144‑3p inhibits tumor cell growth and invasion in oral squamous cell carcinoma through the downregulation of the oncogenic gene, EZH2. Int J Mol Med 2020; 46:828-838. [PMID: 32626925 PMCID: PMC7307824 DOI: 10.3892/ijmm.2020.4638] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence demonstrates that microRNAs (miRNAs or miRs) play important roles in the development and progression of human malignancies, including oral squamous cell carcinoma (OSCC); however, the unique roles of miRNAs are not yet fully understood in OSCC. The present study aimed to identify novel miRNAs associated with OSCC and to elucidate their functions. Based on a micro-array analysis, miR-144-3p was found to be one of the most significantly downregulated miRNAs in OSCC tissues. Its low expression was closely associated with tumor size, differentiation and lymph node metastasis. Functionally, miR-144-3p overexpression suppressed proliferation, promoted apoptosis, and suppressed the invasion and migration of OSCC cells. In addition, enhancer of zeste homolog 2 (EZH2), a well-known oncogene, was proven to be a direct target of miR-144-3p, and its protein expression was negatively regulated by miR-144-3p. Moreover, EZH2 expression was increased, and inversely correlated with the miR-144-3p level in OSCC tissues. Notably, EZH2 knockdown inhibited cell proliferation, promoted cell apoptosis, and suppressed the invasion and migration of OSCC cells, whereas EZH2 overexpression partially reversed the anticancer effects mediated by miR-144-3p overexpression. On the whole, the findings of the present study suggest that miR-144-3p functions as a tumor suppressor by targeting the EZH2 oncogene, and may thus be considered as a potential diagnostic and therapeutic target for OSCC.
Collapse
Affiliation(s)
- Longlong He
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lifan Liao
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Liangzhi Du
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
3
|
Chen X, Fan Z, McGee W, Chen M, Kong R, Wen P, Xiao T, Chen X, Liu J, Zhu L, Chen R, Wu JY. TDP-43 regulates cancer-associated microRNAs. Protein Cell 2018; 9:848-866. [PMID: 28952053 PMCID: PMC6160384 DOI: 10.1007/s13238-017-0480-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Xiaowei Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, 528316, China
| | - Zhen Fan
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Warren McGee
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mengmeng Chen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ruirui Kong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Pushuai Wen
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tengfei Xiao
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomin Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianghong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Research Network of Computational Biology, RNCB, Beijing, 100101, China.
- Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, 528316, China.
| | - Jane Y Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Association of two microRNA polymorphisms miR-27 rs895819 and miR-423 rs6505162 with the risk of cancer. Oncotarget 2018; 8:46969-46980. [PMID: 28415619 PMCID: PMC5564537 DOI: 10.18632/oncotarget.16443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
Many studies have been conducted to investigate the association between miR-27 rs895819 A > G and miR-423 rs6505162 C > A and cancer risk; however, the results are not consistent. In order to acquire a more precise assessment of the correlation, we performed this meta-analysis. We searched PubMed, EMBASE and Web of Science databases to identify eligible studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were applied to evaluate the correlation of these two microRNA polymorphisms with cancer risk. Forty-five eligible studies from thirty-five articles were included in our analysis. The results showed that rs895819 was associated with a decreased cancer risk in Caucasians (AG vs. AA: OR = 0.87, 95% CI = 0.79-0.96; GG+AG vs. AA: OR = 0.89, 95% CI = 0.81-0.98). When grouped by ethnicity, an increased risk was observed in colorectal cancer (G vs. A: OR = 1.19, 95% CI = 1.08-1.32; GG vs. AA: OR = 1.58, 95% CI = 1.28-1.96; GG vs. AG+AA: OR = 1.58, 95% CI = 1.29-1.93), while a decreased risk was found in breast cancer (G vs. A: OR = 0.93, 95% CI = 0.87-0.99; GG+AG vs. AA: OR = 0.91, 95% CI = 0.83-0.99). For rs6505162, a significantly decreased cancer risk was observed in lung cancer under all five genetic models. To summarize, our results indicated that rs895819 was a protective factor for cancer in Caucasians and could increase colorectal cancer risk but decrease breast cancer risk. Moreover, rs6505162 was a protective factor for lung cancer.
Collapse
|
5
|
Feng Y, Duan F, Song C, Zhao X, Dai L, Cui S. Systematic evaluation of cancer risk associated with rs2292832 in miR‑149 and rs895819 in miR‑27a: a comprehensive and updated meta‑analysis. Oncotarget 2017; 7:22368-84. [PMID: 26993779 PMCID: PMC5008366 DOI: 10.18632/oncotarget.8082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/24/2016] [Indexed: 01/23/2023] Open
Abstract
The aim of this study is to provide a precise quantification for the association between miR-149 T > C (rs2292832) and miR-27a A > G (rs895819) and the risk of cancer. We conducted a systematic literature review and evaluated the quality of included studies based on Newcastle-Ottawa Scale (NOS). Pooled odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs) were calculated to assess the strengths of the associations. We identified 40 studies for pooled analyses. Overall, the results demonstrated that the rs2292832 polymorphism was subtly decrease the risk of breast cancer (CT + CC vs TT: OR = 0.83, 95% CI: 0.70-0.98, P = 0.03; CC vs CT + TT: OR = 0.80, 95% CI: 0.68-0.93, P = 0.00), and the rs895819 polymorphism wasassociated with significantly increased cancer risk in the Asian population (AG + GG vs AA: OR = 1.24, 95% CI: 1.03-1.50, P = 0.02) and in colorectal cancer subgroup (GG vs AA: OR = 1.45, 95% CI: 1.10-1.92, P = 0.00; AG + GG vs AA: OR = 1.35, 95% CI: 1.15-1.58, P = 0.00; GG vs AG + AA: OR = 1.36, 95% CI: 1.04-1.77, P = 0.02). In addition, a subtly decreased risk was observed in the Caucasian population and in breast cancer subgroup. In conclusion, the rs2292832 polymorphism was significantly associated with increased breast cancer risk, and the rs895819 polymorphism contributes to the susceptibility of colorectal and breast cancer.
Collapse
Affiliation(s)
- Yajing Feng
- Department of Infection Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, P.R.China
| | - Fujiao Duan
- Department of Hospital Infection Management, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, Henan, P.R.China
| | - Chunhua Song
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, P.R.China
| | - Xia Zhao
- Department of Hospital Infection Management, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, Henan, P.R.China
| | - Liping Dai
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, P.R.China
| | - Shuli Cui
- College of Professional Study, Northeastern University, Boston, 02215 Massachusetts, USA
| |
Collapse
|
6
|
Ding HL, Hooper JE, Batzel P, Eames BF, Postlethwait JH, Artinger KB, Clouthier DE. MicroRNA Profiling during Craniofacial Development: Potential Roles for Mir23b and Mir133b. Front Physiol 2016; 7:281. [PMID: 27471470 PMCID: PMC4943961 DOI: 10.3389/fphys.2016.00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/21/2016] [Indexed: 01/01/2023] Open
Abstract
Defects in mid-facial development, including cleft lip/palate, account for a large number of human birth defects annually. In many cases, aberrant gene expression results in either a reduction in the number of neural crest cells (NCCs) that reach the frontonasal region and form much of the facial skeleton or subsequent failure of NCC patterning and differentiation into bone and cartilage. While loss of gene expression is often associated with developmental defects, aberrant upregulation of expression can also be detrimental. microRNAs (miRNAs) are a class of non-coding RNAs that normally repress gene expression by binding to recognition sequences located in the 3′ UTR of target mRNAs. miRNAs play important roles in many developmental systems, including midfacial development. Here, we take advantage of high throughput RNA sequencing (RNA-seq) from different tissues of the developing mouse midface to interrogate the miRs that are expressed in the midface and select a subset for further expression analysis. Among those examined, we focused on four that showed the highest expression level in in situ hybridization analysis. Mir23b and Mir24.1 are specifically expressed in the developing mouse frontonasal region, in addition to areas in the perichondrium, tongue musculature and cranial ganglia. Mir23b is also expressed in the palatal shelves and in anterior epithelium of the palate. In contrast, Mir133b and Mir128.2 are mainly expressed in head and trunk musculature. Expression analysis of mir23b and mir133b in zebrafish suggests that mir23b is expressed in the pharyngeal arch, otic vesicle, and trunk muscle while mir133b is similarly expressed in head and trunk muscle. Functional analysis by overexpression of mir23b in zebrafish leads to broadening of the ethmoid plate and aberrant cartilage structures in the viscerocranium, while overexpression of mir133b causes a reduction in ethmoid plate size and a significant midfacial cleft. These data illustrate that miRs are expressed in the developing midface and that Mir23b and Mir133b may have roles in this developmental process.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Joan E Hooper
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Peter Batzel
- Department of Neuroscience, University of Oregon Eugene, OR, USA
| | - B Frank Eames
- Department of Neuroscience, University of OregonEugene, OR, USA; Department of Anatomy and Cell Biology, University of SaskatchewanSaskatoon, SK, Canada
| | | | - Kristin B Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - David E Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| |
Collapse
|
7
|
Suresh PS, Venkatesh T, Tsutsumi R. In silico analysis of polymorphisms in microRNAs that target genes affecting aerobic glycolysis. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:69. [PMID: 27004216 DOI: 10.3978/j.issn.2305-5839.2016.01.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer cells preferentially metabolize glucose through aerobic glycolysis, an observation known as the Warburg effect. Recently, studies have deciphered the role of oncogenes and tumor suppressor genes in regulating the Warburg effect. Furthermore, mutations in glycolytic enzymes identified in various cancers highlight the importance of the Warburg effect at the molecular and cellular level. MicroRNAs (miRNAs) are non-coding RNAs that posttranscriptionally regulate gene expression and are dysregulated in the pathogenesis of various types of human cancers. Single nucleotide polymorphisms (SNPs) in miRNA genes may affect miRNA biogenesis, processing, function, and stability and provide additional complexity in the pathogenesis of cancer. Moreover, mutations in miRNA target sequences in target mRNAs can affect expression. METHODS In silico analysis and cataloguing polymorphisms in miRNA genes that target genes directly or indirectly controlling aerobic glycolysis was carried out using different publically available databases. RESULTS miRNA SNP2.0 database revealed several SNPs in miR-126 and miR-25 in the upstream and downstream pre-miRNA flanking regions respectively should be inserted after flanking regions and miR-504 and miR-451 had the fewest. These miRNAs target genes that control aerobic glycolysis indirectly. SNPs in premiRNA genes were found in miR-96, miR-155, miR-25 and miR34a by miRNASNP. Dragon database of polymorphic regulation of miRNA genes (dPORE-miRNA) database revealed several SNPs that modify transcription factor binding sites (TFBS) or creating new TFBS in promoter regions of selected miRNA genes as analyzed by dPORE-miRNA. CONCLUSIONS Our results raise the possibility that integration of SNP analysis in miRNA genes with studies of metabolic adaptations in cancer cells could provide greater understanding of oncogenic mechanisms.
Collapse
Affiliation(s)
- Padmanaban S Suresh
- 1 Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India ; 2 Nitte University Centre for Science Education and Research, Nitte University, Derlakatte, Mangalore, Karnataka, India ; 3 Department of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Thejaswini Venkatesh
- 1 Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India ; 2 Nitte University Centre for Science Education and Research, Nitte University, Derlakatte, Mangalore, Karnataka, India ; 3 Department of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Rie Tsutsumi
- 1 Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India ; 2 Nitte University Centre for Science Education and Research, Nitte University, Derlakatte, Mangalore, Karnataka, India ; 3 Department of Nutrition and Metabolism, Institute of Biomedical Science, Tokushima University, Tokushima, Japan
| |
Collapse
|
8
|
Katoh M. Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front Cell Dev Biol 2014; 2:61. [PMID: 25364765 PMCID: PMC4207049 DOI: 10.3389/fcell.2014.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases and cancers are the leading causes of morbidity and mortality in the world. MicroRNAs (miRNAs) are short non-coding RNAs that primarily repress target mRNAs. Here, miR-24, miR-125b, miR-195, and miR-214 were selected as representative cardio-miRs that are upregulated in human heart failure. To bridge the gap between miRNA studies in cardiology and oncology, the targets and functions of these miRNAs in cardiovascular diseases and cancers will be reviewed. ACVR1B, BCL2, BIM, eNOS, FGFR3, JPH2, MEN1, MYC, p16, and ST7L are miR-24 targets that have been experimentally validated in human cells. ARID3B, BAK1, BCL2, BMPR1B, ERBB2, FGFR2, IL6R, MUC1, SITR7, Smoothened, STAT3, TET2, and TP53 are representative miR-125b targets. ACVR2A, BCL2, CCND1, E2F3, GLUT3, MYB, RAF1, VEGF, WEE1, and WNT7A are representative miR-195 targets. BCL2L2, ß-catenin, BIM, CADM1, EZH2, FGFR1, NRAS, PTEN, TP53, and TWIST1 are representative miR-214 targets. miR-125b is a good cardio-miR that protects cardiomyocytes; miR-195 is a bad cardio-miR that elicits cardiomyopathy and heart failure; miR-24 and miR-214 are bi-functional cardio-miRs. By contrast, miR-24, miR-125b, miR-195, and miR-214 function as oncogenic or tumor suppressor miRNAs in a cancer (sub)type-dependent manner. Circulating miR-24 is elevated in diabetes, breast cancer and lung cancer. Circulating miR-195 is elevated in acute myocardial infarction, breast cancer, prostate cancer and colorectal adenoma. Circulating miR-125b and miR-214 are elevated in some cancers. Cardio-miRs and onco-miRs bear some similarities in functions and circulation profiles. miRNAs regulate WNT, FGF, Hedgehog and other signaling cascades that are involved in orchestration of embryogenesis and homeostasis as well as pathogenesis of human diseases. Because circulating miRNA profiles are modulated by genetic and environmental factors and are dysregulated by genetic and epigenetic alterations in somatic cells, circulating miRNA association studies (CMASs) within several thousands of cases each for common non-cancerous diseases and major cancers are necessary for miRNA-based diagnostics.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center Tokyo, Japan
| |
Collapse
|
9
|
Brenu EW, Ashton KJ, Batovska J, Staines DR, Marshall-Gradisnik SM. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/myalgic encephalomyelitis. PLoS One 2014; 9:e102783. [PMID: 25238588 PMCID: PMC4169517 DOI: 10.1371/journal.pone.0102783] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are known to regulate many biological processes and their dysregulation has been associated with a variety of diseases including Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME). The recent discovery of stable and reproducible miRNA in plasma has raised the possibility that circulating miRNAs may serve as novel diagnostic markers. The objective of this study was to determine the role of plasma miRNA in CFS/ME. Results Using Illumina high-throughput sequencing we identified 19 miRNAs that were differentially expressed in the plasma of CFS/ME patients in comparison to non-fatigued controls. Following RT-qPCR analysis, we were able to confirm the significant up-regulation of three miRNAs (hsa-miR-127-3p, hsa-miR-142-5p and hsa-miR-143-3p) in the CFS/ME patients. Conclusion Our study is the first to identify circulating miRNAs from CFS/ME patients and also to confirm three differentially expressed circulating miRNAs in CFS/ME patients, providing a basis for further study to find useful CFS/ME biomarkers.
Collapse
Affiliation(s)
- Ekua W. Brenu
- School of Medical Science, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
- * E-mail:
| | - Kevin J. Ashton
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Jana Batovska
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia
| | - Donald R. Staines
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
- Queensland Health, Gold Coast Public Health Unit, Robina, Gold Coast, Queensland, Australia
| | - Sonya M. Marshall-Gradisnik
- School of Medical Science, Griffith Health Centre, Griffith University, Gold Coast, Queensland, Australia
- The National Centre for Neuroimmunology and Emerging Diseases, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
10
|
Huumonen K, Korkalainen M, Viluksela M, Lahtinen T, Naarala J, Juutilainen J. Role of microRNAs and DNA Methyltransferases in Transmitting Induced Genomic Instability between Cell Generations. Front Public Health 2014; 2:139. [PMID: 25309892 PMCID: PMC4163984 DOI: 10.3389/fpubh.2014.00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/26/2014] [Indexed: 12/17/2022] Open
Abstract
There is limited understanding of how radiation or chemicals induce genomic instability, and how the instability is epigenetically transmitted to the progeny of exposed cells or organisms. Here, we measured the expression of microRNAs (miRNAs) and DNA methyltransferases (DNMTs) in murine embryonal fibroblasts exposed to ionizing radiation or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which were previously shown to induce genomic instability in this cell line. Cadmium was used as a reference agent that does not induce genomic instability in our experimental model. Measurements at 8 and 15 days after exposure did not identify any such persistent changes that could be considered as signals transmitting genomic instability to the progeny of exposed cells. However, measurements at 2 days after exposure revealed findings that may reflect initial stages of genomic instability. Changes that were common to TCDD and two doses of radiation (but not to cadmium) included five candidate signature miRNAs and general up-regulation of miRNA expression. Expression of DNMT3a, DNMT3b, and DNMT2 was suppressed by cadmium but not by TCDD or radiation, consistently with the hypothesis that sufficient expression of DNMTs is necessary in the initial phase of induced genomic instability.
Collapse
Affiliation(s)
- Katriina Huumonen
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| | - Merja Korkalainen
- Department of Environmental Health, National Institute for Health and Welfare , Kuopio , Finland
| | - Matti Viluksela
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland ; Department of Environmental Health, National Institute for Health and Welfare , Kuopio , Finland
| | - Tapani Lahtinen
- Cancer Center, Kuopio University Hospital , Kuopio , Finland
| | - Jonne Naarala
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| | - Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
11
|
Anaya-Ruiz M, Bandala C, Perez-Santos JLM. miR-485 acts as a tumor suppressor by inhibiting cell growth and migration in breast carcinoma T47D cells. Asian Pac J Cancer Prev 2014; 14:3757-60. [PMID: 23886178 DOI: 10.7314/apjcp.2013.14.6.3757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs (18-25 nucleotides) that post-transcriptionally modulate gene expression by negatively regulating the stability or translational efficiency of their target mRNAs. In this context, the present study aimed to evaluate the in vitro effects of miR-485 mimics in breast carcinoma T47D cells. Forty-eight hours after T47D cells were transfected with miR-485 mimics, an MTT (3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide) assay was utilized to determine the effects on cell viability. Colony formation and cell migration assays were adopted to determine whether miR-485 affects the proliferation rates and cell migration of breast carcinoma T47D cells. Our results showed that ectopic expression of miR-485 resulted in a significant decrease in cell growth, cell colony formation, and cell migration. These findings suggest that miR- 485 might play an important role in breast cancer by suppressing cell proliferation and migration.
Collapse
Affiliation(s)
- Maricruz Anaya-Ruiz
- Laboratory of Cellular Biology, Centro de Investigacion Biomedica de Oriente, Instituto Mexicano del Seguro Social, México City, Mexico
| | | | | |
Collapse
|
12
|
Anaya-Ruiz M, Cebada J, Delgado-Lopez G, Sanchez-Vazquez ML, Perez-Santos JLM. miR-153 Silencing Induces Apoptosis in the MDA-MB-231 Breast Cancer Cell Line. Asian Pac J Cancer Prev 2013. [DOI: 10.7314/apjcp.2013.14.5.2983] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Shao Y, Qu Y, Dang S, Yao B, Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 2013; 13:51. [PMID: 23710609 PMCID: PMC3680295 DOI: 10.1186/1475-2867-13-51] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/14/2013] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a large group of negative gene regulators that potentially play a critical role in tumorigenesis. Increasing evidences indicate that miR-145 acts a tumor suppressor in numerous human cancers. However, its role in oral carcinogenesis remains poorly defined. The aim of this study is to determine expression levels of miR-145 in oral squamous cell carcinomas (OSCCs) and normal mucosa tissues, and explore its biological functions in OSCCs. Methods Reverse transcription quantitative real-time PCR (RT-qPCR) assay was used to evaluate expression levels of miR-145. The biological functions of miR-145 were determined by cell proliferation and colony formation, cell cycle and apoptosis, as well as cell invasion assay. Results MiR-145 was frequently down-regulated in OSCCs compared with normal mucosa tissues. Restoring miR-145 expression in OSCC cells dramatically suppressed cell proliferation and colony formation, and induced G1 phase arrest and cell apoptosis. Importantly, our data showed that miR-145 downregulated the expression of c-Myc and Cdk6, which have previously been identified as two direct targets of miR-145. Conclusions Our data suggest that miR-145 exerts its tumor suppressor function by targeting c-Myc and Cdk6, leading to the inhibition of OSCC cell growth. MiR-145 rescue may thus be a rational for diagnostic and therapeutic applications in OSCC.
Collapse
Affiliation(s)
- Yuan Shao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong, Xi'an 710061, the People's Republic of China.
| | | | | | | | | |
Collapse
|