1
|
Wnt/β-catenin signaling mediates the abnormal osteogenic and adipogenic capabilities of bone marrow mesenchymal stem cells from chronic graft-versus-host disease patients. Cell Death Dis 2021; 12:308. [PMID: 33758171 PMCID: PMC7988169 DOI: 10.1038/s41419-021-03570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is the main cause of non-relapse mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Mesenchymal stem cells (MSCs) in bone marrow (BM) remain unclear in the pathophysiology of cGVHD. In this study, we analyzed BM-MSCs from 66 patients after allo-HSCT, including 33 with active cGVHD and 33 without cGVHD. BM-MSCs showed similar morphology, frequency, phenotype, and proliferation in patients with or without cGVHD. MSCs from the active cGVHD group showed a decreased apoptosis rate (P < 0.01). Osteogenic capacity was increased while adipogenic capacity was decreased in the active cGVHD MSCs compared with no-cGVHD MSCs. The expressions of osteogenic gene RUNX2 and COL1A1 were higher (P < 0.001) while adipogenic gene PPAR-γ and FABP4 were lower (P < 0.001) in the active cGVHD MSCs than no-cGVHD MSCs. These changes were associated with the severity of cGVHD (P < 0.0001; r = 0.534, r = 0.476, r = -0.796, and r = -0.747, respectively in RUNX2, COL1A1, PPAR-γ, and FABP4). The expression of Wnt/β-catenin pathway ligand Wnt3a was increased in cGVHD-MSCs. The dysfunction of cGVHD-MSCs could be reversed by Dickkopf related protein 1(DKK1) to inhibit the binding of Wnt3a. In summary, the differentiation of BM-MSCs was abnormal in active cGVHD, and its underlying mechanism is the upregulated of Wnt3a through Wnt/β-catenin signaling pathway of MSCs.
Collapse
|
2
|
Kusuma GD, Yang MC, Brennecke SP, O'Connor AJ, Kalionis B, Heath DE. Transferable Matrixes Produced from Decellularized Extracellular Matrix Promote Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells and Facilitate Scale-Up. ACS Biomater Sci Eng 2018; 4:1760-1769. [PMID: 33445333 DOI: 10.1021/acsbiomaterials.7b00747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Decellularized extracellular matrixes (dECM) derived from mesenchymal stem cell (MSC) cultures have recently emerged as cell culture substrates that improve the proliferation, differentiation, and maintenance of MSC phenotype during ex vivo expansion. These biomaterials have considerable potential in the fields of stem cell biology, tissue engineering, and regenerative medicine. Processing the dECMs into concentrated solutions of biomolecules that enable the useful properties of the native dECM to be transferred to a new surface via a simple adsorption step would greatly increase the usefulness and impact of this technology. The development of such solutions, hereafter referred to as transferable matrixes, is the focus of this article. In this work, we produced transferable matrixes from dECM derived from two human placental MSC cell lines (DMSC23 and CMSC29) using pepsin digestion (P-ECM), urea extraction (U-ECM), and mechanical homogenization in acetic acid (AA-ECM). Native dECMs improved primary DMSC proliferation as well as osteogenic and adipogenic differentiation, compared with traditional expansion procedures. Interestingly, tissue culture plastic coated with P-ECM was able to replicate the proliferative effects of native dECM, while U-ECM was able to replicate osteogenic differentiation. These data illustrate the feasibility of producing dECM-derived transferable matrixes that replicate key features of the native matrixes and show that different processing techniques produce transferable matrixes with varying bioactivities. Additionally, these transferable matrixes are able to coat 1.3-5.2 times the surface area covered by the native dECM, facilitating scale-up of this technology.
Collapse
Affiliation(s)
- Gina D Kusuma
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Michael C Yang
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shaun P Brennecke
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Andrea J O'Connor
- School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bill Kalionis
- Pregnancy Research Centre, Department of Maternal-Fetal Medicine, Royal Women's Hospital, 20 Flemington Road, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Daniel E Heath
- School of Chemical and Biomedical Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
3
|
Ryzhuk V, Zeng XX, Wang X, Melnychuk V, Lankford L, Farmer D, Wang A. Human amnion extracellular matrix derived bioactive hydrogel for cell delivery and tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:191-202. [PMID: 29407148 DOI: 10.1016/j.msec.2017.12.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/29/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Volodymyr Ryzhuk
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Xu-Xin Zeng
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA; Pharmaceutical Laboratory, School of Medicine, Foshan University, No. 5 Hebin Rd., Foshan, Guangdong, PR China
| | - Xijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA; School of Stomatology, Shandong University, 44 Wenhua Xi Road, Jinan, Shandong, PR China
| | - Veniamin Melnychuk
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California Davis Health System, Research II, 4625 2nd Avenue, Sacramento, CA 95817, USA.
| |
Collapse
|
4
|
Shakouri-Motlagh A, Khanabdali R, Heath DE, Kalionis B. The application of decellularized human term fetal membranes in tissue engineering and regenerative medicine (TERM). Placenta 2017; 59:124-130. [PMID: 28693892 DOI: 10.1016/j.placenta.2017.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022]
Abstract
Tissue engineering and regenerative medicine (TERM) is a field that applies biology and engineering principles to "restore, maintain or repair a tissue after injury". Besides the potential to treat various diseases, these endeavours increase our understanding of fundamental cell biology. Although TERM has progressed rapidly, engineering a whole organ is still beyond our skills, primarily due to the complexity of tissues. Material science and current manufacturing methods are not capable of mimicking this complexity. Therefore, many researchers explore the use of naturally derived materials that maintain important biochemical, structural and mechanical properties of tissues. Consequently, employing non-cellular components of tissues, particularly the extracellular matrix, has emerged as an alternative to synthetic materials. Because of their complexity, decellularized tissues are not as well defined as synthetic materials but they provide cells with a microenvironment that resembles their natural niche. Decellularized tissues are produced from a variety of sources, among which the fetal membranes are excellent candidates since their supply is virtually unlimited, they are readily accessible with minimum ethical concerns and are often discarded as a biological waste. In this review, we will discuss various applications of decellularized fetal membranes as substrates for the expansion of stem cells, their use as two and three-dimensional scaffolds for tissue regeneration, and their use as cell delivery systems. We conclude that fetal membranes have great potential for use in TERM.
Collapse
Affiliation(s)
- Aida Shakouri-Motlagh
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia; Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia
| | - Ramin Khanabdali
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing Centre, The University of Melbourne, Parkville, Victoria, Australia.
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria, Australia; Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
5
|
Fan L, Hu C, Chen J, Cen P, Wang J, Li L. Interaction between Mesenchymal Stem Cells and B-Cells. Int J Mol Sci 2016; 17:E650. [PMID: 27164080 PMCID: PMC4881476 DOI: 10.3390/ijms17050650] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent; non-hematopoietic stem cells. Because of their immunoregulatory abilities; MSCs are widely used for different clinical applications. Compared with that of other immune cells; the investigation of how MSCs specifically regulate B-cells has been superficial and insufficient. In addition; the few experimental studies on this regulation are often contradictory. In this review; we summarize the various interactions between different types or states of MSCs and B-cells; address how different types of MSCs and B-cells affect this interaction and examine how other immune cells influence the regulation of B-cells by MSCs. Finally; we hypothesize why there are conflicting results on the interaction between MSCs and B-cells in the literature.
Collapse
Affiliation(s)
- Linxiao Fan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Jiajia Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Panpan Cen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Jie Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|