1
|
Mellado Sanz M, Alba Moratilla C, Martínez Delgado M, Gerónimo Pardo M, Painceira‐Villar R, Trevissón‐Redondo B. Evaluation of the Biophysical Signs of Healing in the Protocolized Use of the High Capillarity Dressing: A Pilot Study. Int Wound J 2025; 22:e70332. [PMID: 40240303 PMCID: PMC12003046 DOI: 10.1111/iwj.70332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Accepted: 02/22/2025] [Indexed: 04/18/2025] Open
Abstract
The aim of this study was to evaluate the effects of a high-capillarity dressing on chronic wound healing, using hyperspectral imaging to assess biophysical parameters. This quasi-experimental pilot study involved eight adults with chronic ulcers treated with the high-capillarity dressing for 4 weeks. Primary outcomes included pH, temperature, and oxygen saturation, measured using hyperspectral imaging, along with wound area assessed with ImageJ. Secondary outcomes included quality of life, evaluated using the EQ-5D-5L and Wound QoL-17 scales. Data were collected at baseline, 7, 14, and 21 days, and analysed using SPSS. Results showed a significant reduction in lesion size (p < 0.05) and pain (p < 0.001) following treatment. Biophysical assessments revealed a significant decrease in pH (p = 0.004), but no significant changes were observed in other parameters (oxygen saturation, NIR, TWI, TLI). A significant correlation was found between oxygen saturation and pH (p < 0.005). The results suggest that the high-capillarity dressing improves chronic wound healing by reducing lesion size, promoting pH acidification, and improving superficial oxygenation. Additionally, the dressing controlled edema and eliminated infection signs without antibiotics, suggesting its potential in optimising the wound healing environment. These findings highlight the need for further research into the clinical application of this dressing in chronic wound management.
Collapse
Affiliation(s)
| | | | | | | | - Roi Painceira‐Villar
- Department of Nursing and Physiotherapy, Faculty of Health SciencesUniversity of LeónLeónSpain
| | | |
Collapse
|
2
|
Cornejo-Báez AA, Zenteno-Cuevas R, Luna-Herrera J. Association Between Diabetes Mellitus-Tuberculosis and the Generation of Drug Resistance. Microorganisms 2024; 12:2649. [PMID: 39770852 PMCID: PMC11728438 DOI: 10.3390/microorganisms12122649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading infectious causes of death globally, with drug resistance presenting a significant challenge to control efforts. The interplay between type 2 diabetes mellitus (T2DM) and TB introduces additional complexity, as T2DM triples the risk of active TB and exacerbates drug resistance development. This review explores how T2DM-induced metabolic and immune dysregulation fosters the survival of Mtb, promoting persistence and the emergence of multidrug-resistant strains. Mechanisms such as efflux pump activation and the subtherapeutic levels of isoniazid and rifampicin in T2DM patients are highlighted as key contributors to resistance. We discuss the dual syndemics of T2DM-TB, emphasizing the role of glycemic control and innovative therapeutic strategies, including efflux pump inhibitors and host-directed therapies like metformin. This review underscores the need for integrated diagnostic, treatment, and management approaches to address the global impact of T2DM-TB comorbidity and drug resistance.
Collapse
Affiliation(s)
- Axhell Aleid Cornejo-Báez
- Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico;
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa C.P. 91190, Veracruz, Mexico
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa C.P. 91190, Veracruz, Mexico
| | - Julieta Luna-Herrera
- Laboratorio de Inmunoquímica II, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, Mexico City C.P. 11340, Mexico;
| |
Collapse
|
3
|
Floris S, Pintus F, Fais A, Era B, Raho N, Siguri C, Orrù G, Fais S, Tuberoso CIG, Olla S, Di Petrillo A. Biological Potential of Asphodelus microcarpus Extracts: α-Glucosidase and Antibiofilm Activities In Vitro. Molecules 2024; 29:5063. [PMID: 39519706 PMCID: PMC11547317 DOI: 10.3390/molecules29215063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Type 2 diabetes (T2D), characterized by insulin resistance and β-cell dysfunction, requires continuous advancements in management strategies, particularly in controlling postprandial hyperglycemia to prevent complications. Current antidiabetics, which have α-amylase and α-glucosidase inhibitory activities, have side effects, prompting the search for better alternatives. In addition, diabetes patients are particularly vulnerable to yeast infections because an unusual sugar concentration promotes the growth of Candida spp. in areas like the mouth and genitalia. Asphodelus microcarpus contains bioactive flavonoids with potential enzyme inhibitory properties. This study investigates α-amylase and α-glucosidase inhibitory activities and antioxidant and antimycotic capacity of ethanolic extracts from different parts of A. microcarpus. Results show that extracts significantly inhibit α-glucosidase, with the IC50 value being up to 25 times higher than for acarbose, while exerting low α-amylase activity. The extracts also demonstrated strong antioxidant properties and low cytotoxicity. The presence of phenolic compounds is likely responsible for the observed biological activities. Molecular docking analysis of 11 selected compounds identified emodin and luteolin as significant inhibitors of α-glucosidase. Additionally, the extracts demonstrated significant antibiofilm action against an MDR strain of Candida albicans. These findings suggest that A. microcarpus is a promising source of natural compounds for T2D management.
Collapse
Affiliation(s)
- Sonia Floris
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Francesca Pintus
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Antonella Fais
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Benedetta Era
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Nicola Raho
- Gastroenterology Unit, Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (N.R.); (A.D.P.)
| | - Chiara Siguri
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042 Monserrato, Italy;
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.O.); (S.F.)
| | - Sara Fais
- Department of Surgical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (G.O.); (S.F.)
| | - Carlo Ignazio Giovanni Tuberoso
- Department of Life and Environmental Sciences, University of Cagliari, SS 554-Bivio per Sestu, Cittadella Universitaria, 09042 Monserrato, Italy; (S.F.); (F.P.); (B.E.); (C.I.G.T.)
| | - Stefania Olla
- Institute for Genetic and Biomedical Research (IRGB), The National Research Council (CNR), 09042 Monserrato, Italy;
| | - Amalia Di Petrillo
- Gastroenterology Unit, Department of Medical Science and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (N.R.); (A.D.P.)
| |
Collapse
|
4
|
Imam MW, Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: from ancient wisdom to modern science. Arch Microbiol 2024; 206:347. [PMID: 38985339 DOI: 10.1007/s00203-024-03986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 07/11/2024]
Abstract
Essential oils are among the most well-known phyto-compounds, and since ancient times, they have been utilized in medicine. Over 100 essential oils have been identified and utilized as therapies for various skin infections and related ailments. While numerous commercial medicines are available in different dosage forms to treat skin diseases, the persisting issues include their side effects, toxicity, and low efficacy. As a result, researchers are seeking novel classes of compounds as substitutes for synthetic drugs, aiming for minimal side effects, no toxicity, and high efficacy. Essential oils have shown promising antimicrobial activity against skin-associated pathogens. This review presents essential knowledge and scientific information regarding essential oil's antimicrobial capabilities against microorganisms that cause skin infections. Essential oils mechanisms against different pathogens have also been explored. Many essential oils exhibit promising activity against various microbes, which has been qualitatively assessed using the agar disc diffusion experiment, followed by determining the minimum inhibitory concentration for quantitative evaluation. It has been observed that Staphylococcus aureus and Candida albicans have been extensively researched in the context of skin-related infections and their antimicrobial activity, including established modes of action. In contrast, other skin pathogens such as Staphylococcus epidermidis, Streptococcus pyogens, Propionibacterium acnes, and Malassezia furfur have received less attention or neglected. This review report provides an updated understanding of the mechanisms of action of various essential oils with antimicrobial properties. This review explores the anti-infectious activity and mode of action of essential against distinct skin pathogens. Such knowledge can be valuable in treating skin infections and related ailments.
Collapse
Affiliation(s)
- Md Waquar Imam
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201001, Uttar Pradesh, India.
| |
Collapse
|
5
|
Zhou Y, Huang H, Chen G, Yuan Q, Ren J, Wu J, Lin Y, Lin Z, Xu L. Promoting the healing of diabetic wounds with an antimicrobial gel containing AgNPs with anti-infective and anti-inflammatory properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1236-1257. [PMID: 38460114 DOI: 10.1080/09205063.2024.2324494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Diabetic wounds are prone to develop chronic wounds due to bacterial infection and persistent inflammatory response. However, traditional dressings are monofunctional, lack bioactive substances, have limited bacterial inhibition as well as difficulties in adhesion and retention. These limit the therapeutic efficacy of traditional dressings on diabetic wounds. Therefore, finding and developing efficient and safe wound dressings is currently an urgent clinical need. In this study, an antimicrobial gel loaded with silver nanoparticles (AgNPs) (referred to as AgNPs@QAC-CBM) was prepared by crosslinking quaternary ammonium chitosan (QAC) with carbomer (CBM) as a gel matrix. AgNPs@QAC-CBM exhibited a reticulated structure, strong adhesion, good stability, and remarkable bactericidal properties, killing 99.9% of Escherichia coli, Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa within 1 min. Furthermore, AgNPs@QAC-CBM improved the wound microenvironment and accelerated wound healing in diabetic mice by promoting tissue production and collagen deposition, inducing M2 macrophages, reducing pro-inflammatory factor secretion and increasing anti-inflammatory factor levels. Moreover, AgNPs@QAC-CBM was proven to be safe for use through skin irritation and cytotoxicity tests, as they did not cause any irritation or toxicity. To summarize, AgNPs@QAC-CBM showed promising potential in enhancing the diabetic wound healing process.
Collapse
Affiliation(s)
- Yanyan Zhou
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Haiyan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gong Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qi Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jingyuan Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiashen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuchun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhongning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ling Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, China
| |
Collapse
|
6
|
Shahabudin S, Azmi NS, Lani MN, Mukhtar M, Hossain MS. Candida albicans skin infection in diabetic patients: An updated review of pathogenesis and management. Mycoses 2024; 67:e13753. [PMID: 38877612 DOI: 10.1111/myc.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/16/2024]
Abstract
Candida species, commensal residents of human skin, are recognized as the cause of cutaneous candidiasis across various body surfaces. Individuals with weakened immune systems, particularly those with immunosuppressive conditions, are significantly more susceptible to this infection. Diabetes mellitus, a major metabolic disorder, has emerged as a critical factor inducing immunosuppression, thereby facilitating Candida colonization and subsequent skin infections. This comprehensive review examines the prevalence of different types of Candida albicans-induced cutaneous candidiasis in diabetic patients. It explores the underlying mechanisms of pathogenicity and offers insights into recommended preventive measures and treatment strategies. Diabetes notably increases vulnerability to oral and oesophageal candidiasis. Additionally, it can precipitate vulvovaginal candidiasis in females, Candida balanitis in males, and diaper candidiasis in young children with diabetes. Diabetic individuals may also experience candidal infections on their nails, hands and feet. Notably, diabetes appears to be a risk factor for intertrigo syndrome in obese individuals and periodontal disorders in denture wearers. In conclusion, the intricate relationship between diabetes and cutaneous candidiasis necessitates a comprehensive understanding to strategize effective management planning. Further investigation and interdisciplinary collaborative efforts are crucial to address this multifaceted challenge and uncover novel approaches for the treatment, management and prevention of both health conditions, including the development of safer and more effective antifungal agents.
Collapse
Affiliation(s)
- Sakina Shahabudin
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | | | - Md Sanower Hossain
- Centre for Sustainability of Mineral and Resource Recovery Technology (Pusat SMaRRT), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Pahang, Malaysia
| |
Collapse
|
7
|
Schaefer S, Melodia D, Pracey C, Corrigan N, Lenardon MD, Boyer C. Mimicking Charged Host-Defense Peptides to Tune the Antifungal Activity and Biocompatibility of Amphiphilic Polymers. Biomacromolecules 2024; 25:871-889. [PMID: 38165721 DOI: 10.1021/acs.biomac.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Invasive fungal infections impose a substantial global health burden. They cause more than 1.5 million deaths annually and are insufficiently met by the currently approved antifungal drugs. Antifungal peptides are a promising alternative to existing antifungal drugs; however, they can be challenging to synthesize, and are often susceptible to proteases in vivo. Synthetic polymers which mimic the properties of natural antifungal peptides can circumvent these limitations. In this study, we developed a library of 29 amphiphilic polyacrylamides with different charged units, namely, amines, guanidinium, imidazole, and carboxylic acid groups, representative of the natural amino acids lysine, arginine, histidine, and glutamic acid. Ternary polymers incorporating primary ammonium (lysine-like) or imidazole (histidine-like) groups demonstrated superior activity against Candida albicans and biocompatibility with mammalian cells compared to the polymers containing the other charged groups. Furthermore, a combination of primary ammonium, imidazole, and guanidinium (arginine-like) within the same polymer outperformed the antifungal drug amphotericin B in terms of therapeutic index and exhibited fast C. albicans-killing activity. The most promising polymer compositions showed synergistic effects in combination with caspofungin and fluconazole against C. albicans and additionally demonstrated activity against other clinically relevant fungi. Collectively, these results indicate the strong potential of these easily producible polymers to be used as antifungals.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Daniele Melodia
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Christopher Pracey
- Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, UNSW, Sydney, New South Wales 2052, Australia
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
8
|
Zubair M, Husain FM, Al-Amri M, Hasan I, Hassan I, Albalawi T, Fatima F, Khan A, Arshad M, Alam P, Ahmad N, Alatawy R, Begum S, Mir R, Alshadfan H, Ansari AA, Al-Anazi ABAAF. In vitro inhibition of biofilm and virulence factor production in azole-resistant strains of Candida albicans isolated from diabetic foot by Artemisia vulgaris stabilized tin (IV) oxide nanoparticles. Front Cell Infect Microbiol 2024; 13:1322778. [PMID: 38332949 PMCID: PMC10850385 DOI: 10.3389/fcimb.2023.1322778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024] Open
Abstract
The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%-87%, germ tube formation by 72%-90%, cell surface hydrophobicity by 68.2%-82.8%, and exopolysaccharide (EPS) production by 69%-86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing.
Collapse
Affiliation(s)
- Mohammad Zubair
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Marai Al-Amri
- Department of Surgery, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Thamer Albalawi
- Department of Biology, College and Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Farha Fatima
- Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Altaf Khan
- Department of Pharmacology, Central Research Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Arshad
- Dental Biomedical Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Pravej Alam
- Department of Biology, College and Science and Humanities, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Naved Ahmad
- College of Applied Sciences, Al-Maarefa University, Riyadh, Saudi Arabia
| | - Roba Alatawy
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Shamina Begum
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hisham Alshadfan
- Department of Clinical Biochemistry, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Abid Ali Ansari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | | |
Collapse
|
9
|
Shalaby RS, Gaafar MM, El Basshar MA, Soliman MS, Yousry MM, Elmahdy YA. Clinical Study of Coexistence of Fungal Infections in Diabetic Foot Ulcers by 18s rRNA Gene Polymerase Chain Reaction. Open Access Maced J Med Sci 2023. [DOI: 10.3889/oamjms.2023.9602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND: Clinicians frequently ignore fungal infections in diabetic foot ulcers and do not regularly explore profound tissue from the injury for fungal culture and sympathy.
AIM: The present study aimed to detect the etiologic substances and the regularity of fungal corruptions in ulcerated diabetic foot tissue samples utilizing two important diagnostic methods, namely, conventional microbiological methods and conventional 18s rRNA gene polymerase chain reaction (PCR) for detection of fungal foot infection.
MATERIALS AND METHODS: One-hundred diabetic patients suffering from diabetic foot infections were enrolled in the present study. Deep tissue specimens from the depth of the wound were collected from the infected sites using aseptic techniques. Laboratory samples were examined, and morphophysiological methods identified pathogens to the species level. Fungi were detected in samples from infected sites using the PCR.
RESULTS: The presence of fungal infection was detected in 17 (17%) of the 100 patients recruited in our study using conventional PCR. Conventional microbiological methods, on the contrary, revealed the presence of fungal infection in 14 patients (14%). Candida albicans was the most isolated pathogen (71%).
CONCLUSION: In patients with chronic diabetic foot ulcers that are not responding to long-term antibiotic treatment, fungal pathogens should be considered. Early recognition of fungal corruptions in high-risk persons is serious for avoiding severe outcomes, that is, as foot amputation.
Collapse
|
10
|
Chen N, Deng J, Zhang Z, Feng X, Wang H, Chen J, Li L, Cao Y, Jia C, Cao Y. Oxidative stress-triggered pyroptosis mediates Candida albicans susceptibility in diabetic foot. Microb Pathog 2022; 172:105765. [PMID: 36087690 DOI: 10.1016/j.micpath.2022.105765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022]
Abstract
An accumulating trend of research demonstrates that diabetic patients are susceptible to skin infections with Candida albicans, but the mechanism still remains unclear. The intense oxidative stress (OS) responses were occurred in the lesion of diabetic mice footpads after C. albicans infection. Localised skin infections would lead to more severe complications while the severity of the condition worsens or the inadequate treatment. Notably, in this study, through the investigation of murine diabetic footpad C. albicans infection model and molecular biotechnology, including histopathological staining, immunofluorescence (IF) staining, quantitative real-time PCR (qPCR), western blot (WB), flow cytometry (FCM), sandwich enzyme-linked immunosorbent assay (ELISA) assays, we found that intense OS responses in the footpad tissue not only mediated the activation of NF-κB protein complex, but also triggered downstream pyroptosis and apoptosis through NLRP3 inflammasome, which is one of the potential reasons for the severe condition of infectious skin injuries in diabetic mice. Caspase-1, a classical signal pathway protein in pyroptosis, could promote pore formation on cell membranes and the release of the cytokine after NLRP3 inflammasome activation. With intense immune-inflammatory responses, the organism also stimulates immune organs such as the spleen and lymph nodes to produce negative feedback regulation and generate CD4+CD25+Foxp3+ Treg cells to rectify the process. Therefore, combined with the results of this work, it is possible to design and screen relevant drugs for NLRP3 inflammasomes as core targets to keep the OS response at a low level in the footpad tissues.
Collapse
Affiliation(s)
- Nan Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Jie Deng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Zhihui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Xia Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Hongkang Wang
- Department of Physiology and Pharmacology,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Ling Li
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Yemin Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Chenglin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China.
| |
Collapse
|