1
|
Mahjoubi M, Cherif H, Aliyu H, Chouchane H, Cappello S, Neifar M, Mapelli F, Souissi Y, Borin S, Cowan DA, Cherif A. Brucella pituitosa strain BU72, a new hydrocarbonoclastic bacterium through exopolysaccharide-based surfactant production. Int Microbiol 2024:10.1007/s10123-024-00540-8. [PMID: 38867105 DOI: 10.1007/s10123-024-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/22/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Hydrocarbon and heavy metal pollution are amongst the most severe and prevalent environmental problems due to their toxicity and persistence. Bioremediation using microorganisms is considered one of the most effective ways to treat polluted sites. In the present study, we unveil the bioremediation potential of Brucella pituitosa strain BU72. Besides its ability to grow on multiple hydrocarbons as the sole carbon source and highly tolerant to several heavy metals, BU72 produces different exopolysaccharide-based surfactants (EBS) when grown with glucose or with crude oil as sole carbon source. These EBS demonstrated particular and specific functional groups as determined by Fourier transform infrared (FTIR) spectral analysis that showed a strong absorption peak at 3250 cm-1 generated by the -OH group for both EBS. The FTIR spectra of the produced EBS revealed major differences in functional groups and protein content. To better understand the EBS production coupled with the degradation of hydrocarbons and heavy metal resistance, the genome of strain BU72 was sequenced. Annotation of the genome revealed multiple genes putatively involved in EBS production pathways coupled with resistance to heavy metals genes such as arsenic tolerance and cobalt-zinc-cadmium resistance. The genome sequence analysis showed the potential of BU72 to synthesise secondary metabolites and the presence of genes involved in plant growth promotion. Here, we describe the physiological, metabolic, and genomic characteristics of Brucella pituitosa strain BU72, indicating its potential as a bioremediation agent.
Collapse
Affiliation(s)
- Mouna Mahjoubi
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Hanene Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Habibu Aliyu
- Institute for Biological Interfaces (IBG-5), Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Habib Chouchane
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Simone Cappello
- Istituto per le Risorse Biologiche e le Biotecnologie Marine (IRBIM)-CNR of Messina., Sp. San Raineri, 86, 98122, Messina, Italy
| | - Mohamed Neifar
- Common Services Unit "Bioreactor Coupled With an Ultrafilter"; APVA‑LR16ES20; ENIS, University of Sfax, Sfax, Tunisia
| | | | - Yasmine Souissi
- Department of Engineering, German University of Technology in Oman, P.O. Box 1816, PC 130, Muscat, Sultanate of Oman
| | - Sara Borin
- Common Services Unit "Bioreactor Coupled With an Ultrafilter"; APVA‑LR16ES20; ENIS, University of Sfax, Sfax, Tunisia
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0002, South Africa
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
2
|
Mazzon M, Bozzi Cionci N, Buscaroli E, Alberoni D, Baffoni L, Di Gioia D, Marzadori C, Barbanti L, Toscano A, Braschi I. Pot experimental trial for assessing the role of different composts on decontamination and reclamation of a polluted soil from an illegal dump site in Southern Italy using Brassica juncea and Sorghum bicolor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2640-2656. [PMID: 38066270 PMCID: PMC10791941 DOI: 10.1007/s11356-023-31256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
A pot experiment was carried out to evaluate the remediation potential of Brassica juncea and Sorghum bicolor in the decontamination of soil polluted with heavy metals such as copper, lead, tin, and zinc along with polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and heavy hydrocarbons. Two composts obtained from different composting processes were tested as biostimulating agents. At the end of the trial, the effect of plant/compost combinations on soil microbial composition, contaminant removal, biochemical indicators, and plant biomass production was determined. The results highlighted that compost addition improved plant biomass despite slowing down plants' removal of organic and inorganic contaminants. In addition, compost partially enhanced the soil biochemical indicators and modified the relative abundance of the rhizosphere microorganisms. Sorghum showed better mitigation performance than Brassica due to its higher growth. The soil fertility level, the choice of plant species, and microbial richness were found fundamental to perform soil remediation. In contrast, compost was relevant for a higher crop biomass yield.
Collapse
Affiliation(s)
- Martina Mazzon
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Nicole Bozzi Cionci
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Enrico Buscaroli
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy.
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Claudio Marzadori
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Lorenzo Barbanti
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Attilio Toscano
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| | - Ilaria Braschi
- Department of Agricultural and Food Sciences - Alma Mater Studiorum University of Bologna, (BO), Bologna, Italy
| |
Collapse
|
3
|
Wei J, Wang X, Tu C, Long T, Bu Y, Wang H, Jeyakumar P, Jiang J, Deng S. Remediation technologies for neonicotinoids in contaminated environments: Current state and future prospects. ENVIRONMENT INTERNATIONAL 2023; 178:108044. [PMID: 37364306 DOI: 10.1016/j.envint.2023.108044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Neonicotinoids (NEOs) are synthetic insecticides with broad-spectrum insecticidal activity and outstanding efficacy. However, their extensive use and persistence in the environment have resulted in the accumulation and biomagnification of NEOs, posing significant risks to non-target organisms and humans. This review provides a summary of research history, advancements, and highlighted topics in NEOs remediation technologies and mechanisms. Various remediation approaches have been developed, including physiochemical, microbial, and phytoremediation, with microbial and physicochemical remediation being the most extensively studied. Recent advances in physiochemical remediation have led to the development of innovative adsorbents, photocatalysts, and optimized treatment processes. High-efficiency degrading strains with well-characterized metabolic pathways have been successfully isolated and cultured for microbial remediation, while many plant species have shown great potential for phytoremediation. However, significant challenges and gaps remain in this field. Future research should prioritize isolating, domesticating or engineering high efficiency, broad-spectrum microbial strains for NEO degradation, as well as developing synergistic remediation techniques to enhance removal efficiency on multiple NEOs with varying concentrations in different environmental media. Furthermore, a shift from pipe-end treatment to pollution prevention strategies is needed, including the development of green and economically efficient alternatives such as biological insecticides. Integrated remediation technologies and case-specific strategies that can be applied to practical remediation projects need to be developed, along with clarifying NEO degradation mechanisms to improve remediation efficiency. The successful implementation of these strategies will help reduce the negative impact of NEOs on the environment and human health.
Collapse
Affiliation(s)
- Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, Guangdong Technology and Equipment Research Center for Soil and Water Pollution Control, Zhaoqing University, Zhaoqing 526061, Guangdong, China
| | - Xiaoyu Wang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China; School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (CAS), Nanjing 210008, China.
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Yuanqing Bu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environment and Chemical Engineering, Foshan University, Foshan 528000, Guangdong, China
| | - Paramsothy Jeyakumar
- Environmental Sciences Group, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Jinlin Jiang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, Jiangsu, China.
| |
Collapse
|
4
|
Lv N, Li R, Cheng S, Zhang L, Liang P, Gao X. The gut symbiont Sphingomonas mediates imidacloprid resistance in the important agricultural insect pest Aphis gossypii Glover. BMC Biol 2023; 21:86. [PMID: 37069589 PMCID: PMC10111731 DOI: 10.1186/s12915-023-01586-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Neonicotinoid insecticides are applied worldwide for the control of agricultural insect pests. The evolution of neonicotinoid resistance has led to the failure of pest control in the field. The enhanced detoxifying enzyme activity and target mutations play important roles in the resistance of insects to neonicotinoid resistance. Emerging evidence indicates a central role of the gut symbiont in insect pest resistance to pesticides. Existing reports suggest that symbiotic microorganisms could mediate pesticide resistance by degrading pesticides in insect pests. RESULTS The 16S rDNA sequencing results showed that the richness and diversity of the gut community between the imidacloprid-resistant (IMI-R) and imidacloprid-susceptible (IMI-S) strains of the cotton aphid Aphis gossypii showed no significant difference, while the abundance of the gut symbiont Sphingomonas was significantly higher in the IMI-R strain. Antibiotic treatment deprived Sphingomonas of the gut, followed by an increase in susceptibility to imidacloprid in the IMI-R strain. The susceptibility of the IMI-S strain to imidacloprid was significantly decreased as expected after supplementation with Sphingomonas. In addition, the imidacloprid susceptibility in nine field populations, which were all infected with Sphingomonas, increased to different degrees after treatment with antibiotics. Then, we demonstrated that Sphingomonas isolated from the gut of the IMI-R strain could subsist only with imidacloprid as a carbon source. The metabolic efficiency of imidacloprid by Sphingomonas reached 56% by HPLC detection. This further proved that Sphingomonas could mediate A. gossypii resistance to imidacloprid by hydroxylation and nitroreduction. CONCLUSIONS Our findings suggest that the gut symbiont Sphingomonas, with detoxification properties, could offer an opportunity for insect pests to metabolize imidacloprid. These findings enriched our knowledge of mechanisms of insecticide resistance and provided new symbiont-based strategies for control of insecticide-resistant insect pests with high Sphingomonas abundance.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Shenhang Cheng
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Lei Zhang
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, China.
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
5
|
Gautam P, Pandey AK, Dubey SK. Multi-omics approach reveals elevated potential of bacteria for biodegradation of imidacloprid. ENVIRONMENTAL RESEARCH 2023; 221:115271. [PMID: 36640933 DOI: 10.1016/j.envres.2023.115271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
The residual imidacloprid, a widely used insecticide is causing serious environmental concerns. Knowledge of its biodegradation will help in assessing its residual mass in soil. In view of this, a soil microcosm-based study was performed to test the biodegradation potential of Agrobacterium sp. InxBP2. It achieved ∼88% degradation in 20 days and followed the pseudo-first-order kinetics (k = 0.0511 day-1 and t1/2=7 days). Whole genome sequencing of Agrobacterium sp. InxBP2 revealed a genome size of 5.44 Mbp with 5179 genes. Imidacloprid degrading genes at loci K7A42_07110 (ABC transporter substrate-binding protein), K7A42_07270 (amidohydrolase family protein), K7A42_07385 (ABC transporter ATP-binding protein), K7A42_16,845 (nitronate monooxygenase family protein), and K7A42_20,660 (FAD-dependent monooxygenase) having sequence and functional similarity with known counterparts were identified. Molecular docking of proteins encoded by identified genes with their respective degradation pathway intermediates exhibited significant binding energies (-6.56 to -4.14 kcal/mol). Molecular dynamic simulation discovered consistent interactions and binding depicting high stability of docked complexes. Proteome analysis revealed differential protein expression in imidacloprid treated versus untreated samples which corroborated with the in-silico findings. Further, the detection of metabolites proved the bacterial degradation of imidacloprid. Thus, results provided a mechanistic link between imidacloprid and associated degradative genes/enzymes of Agrobacterium sp. InxBP2. These findings will be of immense significance in carrying out the lifecycle analysis and formulating strategies for the bioremediation of soils contaminated with insecticides like imidacloprid.
Collapse
Affiliation(s)
- Pallavi Gautam
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, 284128, India
| | - Suresh Kumar Dubey
- Molecular Ecology Laboratory, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
6
|
Wang X, Wu H, Wang L, Wang Y, Wang X, Wang H, Lu Z. Global transcriptional and translational regulation of Sphingomonas melonis TY in response to hyperosmotic stress. ENVIRONMENTAL RESEARCH 2023; 219:115014. [PMID: 36549482 DOI: 10.1016/j.envres.2022.115014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Hyperosmotic stress is one of the most ubiquitous stress factors in microbial habitats and impairs the efficiency of bacteria performing vital biochemical tasks. Sphingomonas serves as a 'superstar' of plant defense and pollutant degradation, and is widely existed in the environment. However, it is still unclear that how Sphingomonas sp. survives under hyperosmotic stress conditions. In this study, multiomics profiling analysis was conducted with S. melonis TY under hyperosmotic conditions to investigate the intracellular hyperosmotic responses. The transcriptome and proteome revealed that sensing systems, including most membrane protein coding genes were upregulated, genes related to two-component systems were tiered adjusted to reset the whole system, other stress response regulators such as sigma-70 were also significantly tiered upregulated. In addition, transport systems together with compatible solute biosynthesis related genes were significantly upregulated to accumulate intracellular nutrients and compatible solutes. When treated with hyperosmotic stress, redox-stress response systems were triggered and mechanosensitive channels together with ion transporters were induced to maintain cellular ion homeostasis. In addition, cellular concentration of c-di-guanosine monophosphate synthetase (c-di-GMP) was reduced, followed by negative influences on genes involved in flagellar assembly and chemotaxis pathways, leading to severe damage to the athletic ability of S. melonis TY, and causing detachments of biofilms. Briefly, this research revealed a comprehensive response mechanism of S. melonis TY exposure to hyperosmotic stress, and emphasized that flagellar assembly and biofilm formation were vulnerable to hyperosmotic conditions. Importance. Sphingomonas, a genus with versatile functions survives extensively, lauded for its prominent role in plant protection and environmental remediation. Current evidence shows that hyperosmotic stress as a ubiquitous environmental factor, usually threatens the survival of microbes and thus impairs the efficiency of their environmental functions. Thus, it is essential to explore the cellular responses to hyperosmotic stress. Hence, this research will greatly enhance our understanding of the global transcriptional and translational regulation of S. melonis TY in response to hyperosmotic stress, leading to broader perspectives on the impacts of stressful environments.
Collapse
Affiliation(s)
- Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Sorouri B, Rodriguez CI, Gaut BS, Allison SD. Variation in Sphingomonas traits across habitats and phylogenetic clades. Front Microbiol 2023; 14:1146165. [PMID: 37138640 PMCID: PMC10150699 DOI: 10.3389/fmicb.2023.1146165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Whether microbes show habitat preferences is a fundamental question in microbial ecology. If different microbial lineages have distinct traits, those lineages may occur more frequently in habitats where their traits are advantageous. Sphingomonas is an ideal bacterial clade in which to investigate how habitat preference relates to traits because these bacteria inhabit diverse environments and hosts. Here we downloaded 440 publicly available Sphingomonas genomes, assigned them to habitats based on isolation source, and examined their phylogenetic relationships. We sought to address whether: (1) there is a relationship between Sphingomonas habitat and phylogeny, and (2) whether there is a phylogenetic correlation between key, genome-based traits and habitat preference. We hypothesized that Sphingomonas strains from similar habitats would cluster together in phylogenetic clades, and key traits that improve fitness in specific environments should correlate with habitat. Genome-based traits were categorized into the Y-A-S trait-based framework for high growth yield, resource acquisition, and stress tolerance. We selected 252 high quality genomes and constructed a phylogenetic tree with 12 well-defined clades based on an alignment of 404 core genes. Sphingomonas strains from the same habitat clustered together within the same clades, and strains within clades shared similar clusters of accessory genes. Additionally, key genome-based trait frequencies varied across habitats. We conclude that Sphingomonas gene content reflects habitat preference. This knowledge of how environment and host relate to phylogeny may also help with future functional predictions about Sphingomonas and facilitate applications in bioremediation.
Collapse
Affiliation(s)
- Bahareh Sorouri
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- *Correspondence: Bahareh Sorouri,
| | - Cynthia I. Rodriguez
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Brandon S. Gaut
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
| | - Steven D. Allison
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, United States
- Department of Earth System Science, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
8
|
Culturable microorganisms of substrates of terrestrial plant communities of the maritime Antarctic (Galindez Island, Booth Island). Polar Biol 2022. [DOI: 10.1007/s00300-022-03103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Wang H, Wang X, Wang L, Lu Z. Nutritional stress induced intraspecies competition revealed by transcriptome analysis in Sphingomonas melonis TY. Appl Microbiol Biotechnol 2022; 106:5675-5686. [PMID: 35927333 DOI: 10.1007/s00253-022-12097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Bacteria have developed various mechanisms by which they can compete or cooperate with other bacteria. This study showed that in the cocultures of wild-type Sphingomonas melonis TY and its isogenic mutant TYΔndpD grow with nicotine, the former can outcompete the latter. TYΔndpD undergoes growth arrest after four days when cocultured with wild-type TY, whereas the coculture has just entered a stationary phase and the substrate was nearly depleted, and the interaction between the two related strains was revealed by transcriptomic analysis. Analysis of the differential expression genes indicated that wild-type TY inhibited the growth of TYΔndpD mainly through toxin-antitoxin (TA) systems. The four upregulated antitoxin coding genes belong to type II TA systems in which the bactericidal effect of the cognate toxin was mainly through inhibition of translation or DNA replication, whereas wild-type TY with upregulated antitoxin genes can regenerate cognate immunity protein continuously and thus prevent the lethal action of toxin to itself. In addition, colicin-mediated antibacterial activity against closely related species may also be involved in the competition between wild-type TY and TYΔndpD under nutritional stress. Moreover, upregulation of carbon and nitrogen catabolism related-, stress response related-, DNA repair related-, and DNA replication-related genes in wild-type TY showed that it triggered a series of response mechanisms when facing dual stress of competition from isogenic mutant cells and nutritional limitation. Thus, we proposed that S. melonis TY employed the TA systems and colicin to compete with TYΔndpD under nutritional stress, thereby maximally acquiring and exploiting finite resources. KEY POINTS: • Cross-feeding between isogenic mutants and the wild-type strain. • Nutrition stress caused a shift from cooperation to competition. • TYΔndpD undergo growth arrest by exogenous and endogenous toxins.
Collapse
Affiliation(s)
- Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
10
|
Cheng X, Chen KX, Jiang ND, Wang L, Jiang HY, Zhao YX, Dai ZL, Dai YJ. Nitroreduction of imidacloprid by the actinomycete Gordonia alkanivorans and the stability and acute toxicity of the nitroso metabolite. CHEMOSPHERE 2022; 291:132885. [PMID: 34774905 DOI: 10.1016/j.chemosphere.2021.132885] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The insecticide imidacloprid (IMI), which is used worldwide, pollutes environments and has significant ecotoxicological effects. Microbial metabolism and photolysis are the major pathways of IMI degradation in natural environments. Several studies have reported that the metabolites of IMI nitroreduction are more toxic to some insects and mammals than IMI itself. Thus, environmental degradation of IMI may enhance the ecotoxicity of IMI and have adverse effects on non-target organisms. Here, we report that an actinomycete-Gordonia alkanivorans CGMCC 21704-transforms IMI to a nitroreduction metabolite, nitroso IMI. Resting cells of G. alkanivorans at OD600 nm = 10 transformed 95.7% of 200 mg L-1 IMI to nitroso IMI in 4 d. Nitroso IMI was stable at pH 4-9. However, it rapidly degraded under sunlight via multiple oxidation, dehalogenation, and oxidative cleavage reactions to form 10 derivatives; the half-life of nitroso IMI in photolysis was 0.41 h, compared with 6.19 h for IMI. Acute toxicity studies showed that the half maximal effective concentration (EC50) values of IMI, nitroso IMI, and its photolytic metabolites toward the planktonic crustacean Daphnia magna for immobilization (exposed to the test compounds for 48 h) were 17.70, 9.38, 8.44 mg L-1, respectively. The half-life of nitroso IMI in various soils was also examined. The present study reveals that microbial nitroreduction accelerates IMI degradation and the nitroso IMI is easily decomposed by sunlight and in soil. However, nitroso IMI and its photolytic products have higher toxicity toward D. magna than the parent compound IMI, and therefore increase the ecotoxicity of IMI.
Collapse
Affiliation(s)
- Xi Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Ke-Xin Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Neng-Dang Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Huo-Yong Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yun-Xiu Zhao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Zhi-Ling Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Yi-Jun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
11
|
Gao Y, Liu M, Zhao X, Zhang X, Zhou F. Paracoccus and Achromobacter bacteria contribute to rapid biodegradation of imidacloprid in soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112785. [PMID: 34544021 DOI: 10.1016/j.ecoenv.2021.112785] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 05/20/2023]
Abstract
Neonicotinoids are among the most widely used insecticides worldwide, and as such, have garnered increasing attention from the scientific community in regards to their potentially negative environmental impacts. Recently, the degradability of neonicotinoid in soil has gained more attentions. However, what role soil microbes play in this degradation remains vastly underexplored. In this study, we compared the capacity of soil microbes sampled from different geographic regions and fields to degrade the neonicotinoid insecticide imidacloprid. Additionally, the composition of microbiota having low, middle, and high degradation activity was analyzed via high throughput sequencing. Correlations between microbiota composition and degradation activities were analyzed and reconfirmed. The results showed that the composition of soil microbiota and their degradation activity (ranged from zero to 96.25%) varied significantly between soil samples from different geographic locations. Correlation analysis showed that Paracoccus and Achromobacter bacteria were positively correlated with high degradation activity. Imidacloprid degradation experiments using these bacteria showed that Achromobacter sp. alone exhibited degradation activity reaching and sustaining 100% by day 20 while Paracoccus sp. did not. However, combining these bacteria resulted in increased degradation activity which reached 100% at day 15 relative to that achieved by Achromobacter sp. alone. This study demonstrated the capacity of soil microbes to degrade imidacloprid, and identified two promising bacterial candidates that could be potentially used in future to reduce imidacloprid accumulation in soils.
Collapse
Affiliation(s)
- Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China.
| | - Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103, China.
| |
Collapse
|
12
|
Verma S, Singh D, Chatterjee S. Malathion biodegradation by a psychrotolerant bacteria Ochrobactrum sp. M1D and metabolic pathway analysis. Lett Appl Microbiol 2021; 73:326-335. [PMID: 34060111 DOI: 10.1111/lam.13517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 01/12/2023]
Abstract
An organophosphorus pesticide malathion biodegradation was investigated by using the bacteria Ochrobactrum sp. M1D isolated from a soil sample of peach orchards in Palampur, District Kangra, Himachal Pradesh (India). The bacterium was able to utilize malathion as the sole source of carbon and energy. The isolated bacterium was found psychrotolerant and could degrade 100% of 100 mg l-1 malathion in minimal salt medium at 20°C, pH 7·0 within 12 days with no major significant metabolites left at the end of the study. Through GCMS analysis, methyl phosphate, diethyl maleate, and diethyl 2-mercaptosuccinate were detected and identified as the major pathway metabolites. Based on the GCMS profile, three probable degradation pathways were interpreted. The present study is the first report of malathion biodegradation at both the psychrophilic and mesophilic conditions by any psychrotolerant strain and also through multiple degradation pathways. In the future, the strain can be explored to bio-remediate the malathion contaminated soil in the cold climatic region and to utilize the enzymatic systems for advanced biotechnology applications.
Collapse
Affiliation(s)
- S Verma
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Kangra District, Shahpur, Himachal Pradesh, India
| | - D Singh
- Molecular and Microbial Genetics Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - S Chatterjee
- Bioremediation and Metabolomics Research Group, Department of Environmental Sciences, Central University of Himachal Pradesh, Temporary Academic Block, Kangra District, Shahpur, Himachal Pradesh, India
| |
Collapse
|
13
|
Zamule SM, Dupre CE, Mendola ML, Widmer J, Shebert JA, Roote CE, Das P. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111814. [PMID: 33360286 DOI: 10.1016/j.ecoenv.2020.111814] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Thiamethoxam (THM) and imidacloprid (IMI), are environmentally persistent neonicotinoid insecticides which have become increasingly favored in the past decade due to their specificity as insect neurotoxicants. However, neonicotinoids have been implicated as a potential contributing factor in Colony Collapse Disorder (CCD) which affects produce production on a global scale. The present study characterizes the bioremediation potential of six bacterial species: Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aeruginosa, Alcaligenes faecalis, Escherichia coli, and Streptococcus lactis. In Phase I, we evaluated the utilization of IMI or THM as the sole carbon or nitrogen source by P. fluorescens, P. putida, and P. aeruginosa. All three species were better able to utilize THM over IMI as their sole carbon or nitrogen source. Thus, further studies proceeded with THM only. In Phase II, we assessed the kinetics of THM removal from aqueous media by the six species. Significant (p < 0.0001) reductions in 70 mg/L THM concentration were observed for P. fluorescens (67%), P. putida (65%), P. aeruginosa (52%), and A. faecalis (39%) over the 24-day study period, and for E. coli (60%) and S. lactis (12%) over the 14-day study period. The THM removal by all species followed a first-order kinetic reaction. HPLC chromatograms of P. fluorescens, P. putida, and E. coli cultures revealed that as the area of the THM peak decreased over time, the area of an unidentified metabolite peak increased. In Phase III, we examined the effect of temperature on the transformation capacity of the bacterial species which was observed at 2 ℃, 22 ℃, and 30 ℃. Maximal THM removal occurred at 30 °C for all bacterial species assessed. Identification of the metabolite is currently underway. If the metabolite is found to be less hazardous than THM, further testing will follow to evaluate the use of this bioremediation technique in the field.
Collapse
Affiliation(s)
- Stephanie M Zamule
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Cassandra E Dupre
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Meghan L Mendola
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Julia Widmer
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Jane A Shebert
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Carol E Roote
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Padmini Das
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA.
| |
Collapse
|
14
|
The Evaluation of Imidacloprid Remediation in Soil Media by Two Bacterial Strains. Curr Microbiol 2019; 76:1461-1466. [DOI: 10.1007/s00284-019-01774-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/14/2019] [Indexed: 11/27/2022]
|