1
|
Manap S, Medetalibeyoğlu H, Kılıç A, Karataş OF, Tüzün B, Alkan M, Ortaakarsu AB, Atalay A, Beytur M, Yüksek H. Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1,2,4-triazole, and assessment of their anticancer activity. J Biomol Struct Dyn 2023; 42:11916-11930. [PMID: 37840297 DOI: 10.1080/07391102.2023.2265501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
A series of biologically active novel Mannich bases containing with a 1H-1,2,4-triazole-5-one ring were developed to evaluate the cytotoxic activity. For this purpose, the synthesized Schiff Bases (S1-5) were reacted with formaldehyde and morpholine, which is a secondary amine to yield novel N-Mannich bases (M1-5) via the Mannich reaction. The structures of the compounds (M1-5) were determined structurally employing 1H/13C-NMR, IR and elemental analysis. In this study, we evaluated the cytotoxic potential of the compounds (M1-5) on the human hypopharyngeal carcinoma FaDu cells. We found that the compound (M3) possesses a significant anticancer feature against FaDu cells that might be evaluated with further in vitro and in vivo studies to understand its anticancer potential better. Lastly, comparisons were made using molecular docking calculations to find the theoretical activities of the compounds (M1-5). The docking score parameter of the compound (M3) against the 2DO4 protein is -5.67, the docking score parameter against the 5JPZ protein is -5.72, and finally, the docking score parameter against the 2H80 protein is -5.50. Molecular dynamic calculations are made for 0-100 ns. The ADME/T calculations were performed to find the drug potential of the compounds (M1-5). The results suggest that our drug candidate compound exhibits strong potential for co-administration with the antigen structures, owing to the low rate of interactions that decreased over time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevda Manap
- Department of Chemistry, Kafkas University, Kars, Turkey
| | | | - Ahsen Kılıç
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karataş
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Sivas Technical Sciences Vocational School, Sivas Cumhuriyet University, Turkey
| | | | | | - Abdurrahman Atalay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Beytur
- Department of Chemistry, Kafkas University, Kars, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Kafkas University, Kars, Turkey
| |
Collapse
|
2
|
Apiraksattayakul S, Pingaew R, Leechaisit R, Prachayasittikul V, Ruankham W, Songtawee N, Tantimongcolwat T, Ruchirawat S, Prachayasittikul V, Prachayasittikul S, Phopin K. Aminochalcones Attenuate Neuronal Cell Death under Oxidative Damage via Sirtuin 1 Activity. ACS OMEGA 2023; 8:33367-33379. [PMID: 37744807 PMCID: PMC10515382 DOI: 10.1021/acsomega.3c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Encouraged by the lack of effective treatments and the dramatic growth in the global prevalence of neurodegenerative diseases along with various pharmacological properties of chalcone pharmacophores, this study focused on the development of aminochalcone-based compounds, organic molecules characterized by a chalcone backbone (consisting of two aromatic rings connected by a three-carbon α,β-unsaturated carbonyl system) with an amino group attached to one of the aromatic rings, as potential neuroprotective agents. Thus, the aminochalcone-based compounds in this study were designed by bearing a -OCH3 moiety at different positions on the ring and synthesized by the Claisen-Schmidt condensation. The compounds exhibited strong neuroprotective effects against hydrogen peroxide-induced neuronal death in the human neuroblastoma (SH-SY5Y) cell line (i.e., by improving cell survival, reducing reactive oxygen species production, maintaining mitochondrial function, and preventing cell membrane damage). The aminochalcone-based compounds showed mild toxicity toward a normal embryonic lung cell line (MRC-5) and a human neuroblastoma cell line, and were predicted to have preferable pharmacokinetic profiles with potential for oral administration. Molecular docking simulation indicated that the studied aminochalcones may act as competitive activators of the well-known protective protein, SIRT1, and provided beneficial knowledge regarding the essential key chemical moieties and interacting amino acid residues. Collectively, this work provides a series of four promising candidate agents that could be developed for neuroprotection.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Ratchanok Pingaew
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Ronnakorn Leechaisit
- Department
of Chemistry, Faculty of Science, Srinakharinwirot
University, Bangkok 10110, Thailand
| | - Veda Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Waralee Ruankham
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Napat Songtawee
- Department
of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Tanawut Tantimongcolwat
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research Institute, and Program
in Chemical Science, Chulabhorn Graduate
Institute, Bangkok 10210, Thailand
- Center of
Excellence on Environmental Health and Toxicology (EHT), Commission
on Higher Education, Ministry of Education, Bangkok 10400, Thailand
| | - Virapong Prachayasittikul
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Supaluk Prachayasittikul
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Kamonrat Phopin
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
- Department
of Clinical Microbiology and Applied Technology, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
3
|
Tharamelveliyil Rajendran A, Dheeraj Rajesh G, Kumar P, Shivam Raju Dwivedi P, Shashidhara Shastry C, Narayanan Vadakkepushpakath A. Selection of potential natural compounds for poly-ADP-ribose polymerase (PARP) inhibition in glioblastoma therapy by in silico screening methods. Saudi J Biol Sci 2023; 30:103698. [PMID: 37485452 PMCID: PMC10362462 DOI: 10.1016/j.sjbs.2023.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023] Open
Abstract
Glioblastoma (GBM), the most prevalent brain tumor, is one of the least treatable malignancies due to its propensity for intracranial spread, high proliferative potential, and innate resistance to radiation and chemotherapy. Current GBM therapy is limited due to unfavorable, non-specific therapeutic effects in healthy cells and the difficulty of small molecules to penetrate the blood brain barrier (BBB) and reach the tumor microenvironment. Adding PARP-1 inhibitors inhibit DNA repair enzymes thereby increasing the cytotoxicity of anticancer agents. Hence, we aimed to discover potential naturally occurring PARP-1 inhibitors that can be utilized in the treatment of glioma by using multiple in silico tools like molecular docking, absorption, distribution, metabolism, and excretion (ADME) profile, pharmacophore modeling, and molecular dynamic (MD) simulations. Among 43 phytocompounds we screened, two of them (Ellagic acid and Naringin) were discovered to be bound to the catalytic site of PARP-1 with an affinity more remarkable than commercially available PARP-1 inhibitors (Talazoparib, Niraparib, and Rucaparib) except Olaparib. The molecular interactions were analyzed, and data shows that bound entity attained a conserved domain via hydrogen bond interactions, polar interactions, and π-π stacking. Pharmacophore modeling studies showed electronic and steric features of ligands responsible for supramolecular interaction with PARP-1. ADME properties were studied, to assess drug-likeness, hydrophilic nature, hydrophobicity, brain permeability, and oral bioavailability of the natural PARP-1 inhibitors. The simulation study demonstrated the development of a stable complex between Naringin, Ellagic acid, and PARP-1 protein. Moreover, cell culture studies and animal investigations are essential to determine pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore-575018, Karnataka, India
| | - Gupta Dheeraj Rajesh
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical chemistry, Mangalore-575018, Karnataka, India
| | - Pankaj Kumar
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical chemistry, Mangalore-575018, Karnataka, India
| | - Prarambh Shivam Raju Dwivedi
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangalore-575018, Karnataka, India
| | - Chakrakodi Shashidhara Shastry
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacology, Mangalore-575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore-575018, Karnataka, India
| |
Collapse
|
4
|
Tas A, Tüzün B, Khalilov AN, Taslimi P, Ağbektas T, Cakmak NK. In vitro cytotoxic effects, in silico studies, some metabolic enzymes inhibition, and vibrational spectral analysis of novel β-amino alcohol compounds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
The potential of chalcone derivatives as human carbonic anhydrase inhibitors in the therapy of glaucoma. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Ünver Y, Süleymanoğlu N, Ustabaş R, Güler Hİ, Bektaş E, Bektaş Kİ, Çelik F. New carbazol derivatives containing 1,2,4-triazole: Synthesis, characterization, DFT study, acetylcholinesterase activity and docking study. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
7
|
Mermer A, Volkan Bulbul M, Mervenur Kalender S, Keskin I, Tuzun B, Emre Eyupoglu O. Benzotriazole-oxadiazole hybrid Compounds: Synthesis, anticancer Activity, molecular docking and ADME profiling studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
George G, Koyiparambath VP, Sukumaran S, Nair AS, Pappachan LK, Al-Sehemi AG, Kim H, Mathew B. Structural Modifications on Chalcone Framework for Developing New Class of Cholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms23063121. [PMID: 35328542 PMCID: PMC8953944 DOI: 10.3390/ijms23063121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022] Open
Abstract
Due to the multifaceted pharmacological activities of chalcones, these scaffolds have been considered one of the most privileged frameworks in the drug discovery process. Structurally, chalcones are α, β-unsaturated carbonyl functionalities with two aryl or heteroaryl units. Amongst the numerous pharmacological activities explored for chalcone derivatives, the development of novel chalcone analogs for the treatment of Alzheimer's disease (AD) is among the research topics of most interest. Chalcones possess numerous advantages, such as smaller molecular size, opportunities for further structural modification thereby altering the physicochemical properties, cost-effectiveness, and convenient synthetic methodology. The present review highlights the recent evidence of chalcones as a privileged structure in AD drug development processes. Different classes of chalcone-derived analogs are summarized for the easy understanding of the previously reported analogs as well as the importance of certain functionalities in exhibiting cholinesterase inhibition. In this way, this review will shed light on the medicinal chemistry fraternity for the design and development of novel promising chalcone candidates for the treatment of AD.
Collapse
Affiliation(s)
- Ginson George
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Sunitha Sukumaran
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Leena K. Pappachan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Hoon Kim
- Department of Pharmacy, Sunchon National University, Suncheon 57922, Korea
- Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Korea
- Correspondence: (H.K.); (B.M.)
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi 682 041, India; (G.G.); (V.P.K.); (S.S.); (A.S.N.); (L.K.P.)
- Correspondence: (H.K.); (B.M.)
| |
Collapse
|
9
|
Majumdar D, Tüzün B, Pal TK, Das S, Bankura K. Architectural View of Flexible Aliphatic –OH Group Coordinated Hemi-Directed Pb(II)-Salen Coordination Polymer: Synthesis, Crystal Structure, Spectroscopic Insights, Supramolecular Topographies, and DFT Perspective. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02194-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|