1
|
Huang Y, Su E, Mu X, Wang J, Wang Y, Xie J, Ying R. The recent development of nanozymes for food quality and safety detection. J Mater Chem B 2022; 10:1359-1368. [DOI: 10.1039/d1tb02667d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As potential mimics of natural enzymes, nanozymes overcome many disadvantages of natural enzymes such as complex preparation and purification process, high price, poor stability and low recycling efficiency. Combined with...
Collapse
|
2
|
Dan X, Ruiyi L, Qinsheng W, Yongqiang Y, Guangli W, Zaijun L. Synthesis of silver nanocrystal with an excellent oxidase-like activity and its application in colorimetric detection of D-penicillamine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
3
|
Li Q, Tian A, Chen C, Jiao T, Wang T, Zhu S, Sha J. Anderson polyoxometalates with intrinsic oxidase-mimic activity for "turn on" fluorescence sensing of dopamine. Anal Bioanal Chem 2021; 413:4255-4265. [PMID: 33988741 DOI: 10.1007/s00216-021-03376-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/28/2023]
Abstract
Anderson-type polyoxometalate containing Fe3+ and Mo6+, (NH4)3[H6Fe(III)Mo6O24] (FeMo6), was found to work as an oxidase-mimicking nanoenzyme for the first time, exhibiting the ability of catalytic oxidation of o-phenylenediamine (OPD), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTs), and 3,3',5,5'-tetramethylbenzidine (TMB), which features easy synthesis, low cost, simple operation, and low consumption. Attributed to the nature of FeMo6 and Fenton-like effect, a novel sensor based on two consecutive "turn on" fluorescence was developed for detecting dopamine (DA) by employing the FeMo6-OPD system, and the linear range was from 1 to 100 μM with the detection limit 0.0227 μM (3σ/s). Moreover, to increase oxidase-mimic activity of FeMo6, reduced graphene oxide (rGO) loading FeMo6 composites (FeMo6@rGO (n), n = 5%, 10%, 15%) was fabricated, and results show that oxidase-like activities of FeMo6@rGO (n) are dependent on the mass ratio of FeMo6/rGO, and FeMo6@rGO (10%) exhibits the highest oxidase-mimic activity and the fastest respond time (4 min) among all reported oxidase mimic of DA to date. Graphical abstract Anderson-type Mo-POMs FeMo6 was found to work as an oxidase-mimicking nanoenzyme for the first time and was used to detect DA for two consecutive "turn on" fluorescence sensor modes.
Collapse
Affiliation(s)
- Qian Li
- The Talent Culturing Plan for Leading Disciplines of Shandong Province, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, Liaoning, China
| | - Cuiying Chen
- The Talent Culturing Plan for Leading Disciplines of Shandong Province, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China
| | - Tiying Jiao
- The Talent Culturing Plan for Leading Disciplines of Shandong Province, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China
| | - Ting Wang
- The Talent Culturing Plan for Leading Disciplines of Shandong Province, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China
| | - Shengyu Zhu
- The Talent Culturing Plan for Leading Disciplines of Shandong Province, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China
| | - Jingquan Sha
- The Talent Culturing Plan for Leading Disciplines of Shandong Province, Department of Chemistry and Chemical Engineering, Jining University, Qufu, 273155, Shandong, China.
| |
Collapse
|
4
|
Dan X, Ruiyi L, Qinsheng W, Yongqiang Y, Haiyan Z, Zaijun L. A NiAg-graphene quantum dot-graphene hybrid with high oxidase-like catalytic activity for sensitive colorimetric detection of malathion. NEW J CHEM 2021. [DOI: 10.1039/d1nj00621e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper reports the synthesis of a nickel-silver-graphene quantum dot-graphene hybrid.
Collapse
Affiliation(s)
- Xu Dan
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Li Ruiyi
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Wang Qinsheng
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu)
- Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi
- Wuxi 214174
- China
| | - Yang Yongqiang
- National Graphene Products Quality Supervision and Inspection Center (Jiangsu)
- Jiangsu Province Special Equipment Safety Supervision Inspection Institute·Branch of Wuxi
- Wuxi 214174
- China
| | - Zhu Haiyan
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Li Zaijun
- School of Chemical and Materials Engineering
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
5
|
Ahmed SH, Bakiro M, Aljasmi FIA, Albreiki AMO, Bayane S, Alzamly A. Investigation of the band gap and photocatalytic properties of CeO2/rGO composites. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1561] [Impact Index Per Article: 312.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
7
|
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 2019; 48:1004-1076. [DOI: 10.1039/c8cs00457a] [Citation(s) in RCA: 1628] [Impact Index Per Article: 325.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An updated comprehensive review to help researchers understand nanozymes better and in turn to advance the field.
Collapse
Affiliation(s)
- Jiangjiexing Wu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Zhangping Lou
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Yunyao Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Li Qin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences
- Nanjing National Laboratory of Microstructures
- Jiangsu Key Laboratory of Artificial Functional Materials
- Nanjing University
- Nanjing
| |
Collapse
|